DEAN ANTONIO F. MATEO, Ph. D.: Short Profile

- * DEAN, COLLEGE OF ENGINEERING, ADAMSON UNIVERSITY, (1983 -1986) & (2001 2005);
- * GRADUATE OF B.S. ELECTRICAL ENG' G, 1968, MAPUA INSTITUTE OF TECHNOLOGY;
- * SUMMA CUM LAUDE, M.S. MANAGEMENT ENG'G, 1975, ADAMSON UNIVERSITY;
- * BENEMERITUS, Ph.D. IN MANAGEMENT, 1982, UNIVERSITY OF SANTO TOMAS GRADUATE SCHOOL;
- * PLASTIC EXTRUSION COURSE, 1977, NEW YORK UNIVERSITY, U.S.A.
- * MULTI-AWARDED INVENTOR, WITH 81 PATENT CERTIFICATES;
- * WIPO (GENEVA, SWITZERLAND), GOLD MEDAL AWARDEE AS BEST INVENTOR, 1994;
- * PROFESSIONAL LECTURER; ENG'G / MANAGEMENT / RAINWATER HARVESTING SYSTEM CONSULTANT;
- * OUTSTANDING MANILA INVENTOR IN THE FIELD OF WATER SYSTEM, 1999;
- * OUTSTANDING MAPUAN (TOM) FIELD OF INVENTIONS & PIONEERING ENDEAVOR, MIT HALL OF FAME;
- * FIRST DIAMOND AWARDEE, UST GRADUATE SCHOOL HALL OF FAME, 1999;
- * OUTSTANDING CITIZEN, FIELD OF SCIENCE AND TECHNOLOGY 2004;
- * RESEARCH FELLOW OF SINGAPORE ROYAL INSTITUTE OF ENGINEERS 2014;
- * CONSISTENT WINNER IN THE NATIONAL INVENTORS WEEK CONTESTS, NIW' 83, '84, '85, '87, '90, '94, '96, '98, '99, '03,'06 & '08, EARNING A PLACE AT THE TAPI/DOST INVENTORS' HALL OF FAME;
- * GOLD MEDAL AWARDEE, INPEX, "AMERICA'S LARGEST INVENTIONS EXPO", PITTSBURGH, U.S.A., 2008;



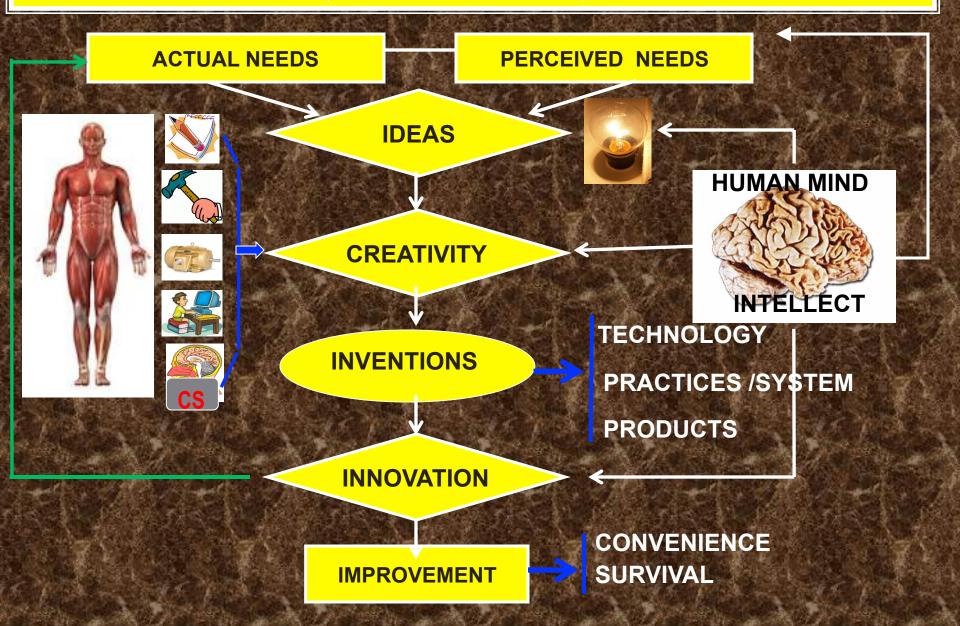
SEMINAR 23 SGRA'S KKK RESEARCH ADVOCACY MAY 7, 2017, AMECOS LECTURE ROOM

INNOVENTIONS VS CLIMATE CHANGE EFFECTS

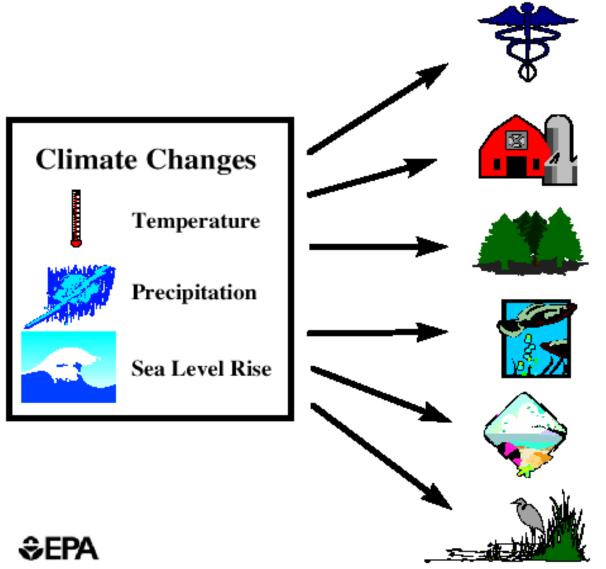
WORLD INTELLECTUAL PROPERTY ORGANIZATION (WIPO) 1994 BEST INVENTOR
RESEARCH FELLOW, SINGAPORE ROYAL INSTITUE OF ENGINEERS
RAINWATER HARVESTING SYSTEM / ENGINEERING CONSULTANT

INNOVENTIONS

Creative technological solutions (Technology, Product, Process, Practices or System) whether new or improved.


6 Man is a creature of hope and invention: both of which belie the idea that things cannot be changed."

Tom Clancy


Innovation is not a process but a state of mind. Therefore, it can't be learned but felt.

Ivonne Kinser

FLOW OF IDEAS — CREATIVITY — INNOVENTIONS

Potential Climate Change Impacts

Health Impacts

Weather-related Mortality Infectious Diseases Air Quality-Respiratory Illnesses

Agriculture Impacts

Crop yields Irrigation demands

Forest Impacts

Change in forest composition Shift geographic range of forests Forest Health and Productivity

Water Resource Impacts

Changes in water supply Water quality Increased Competition for water

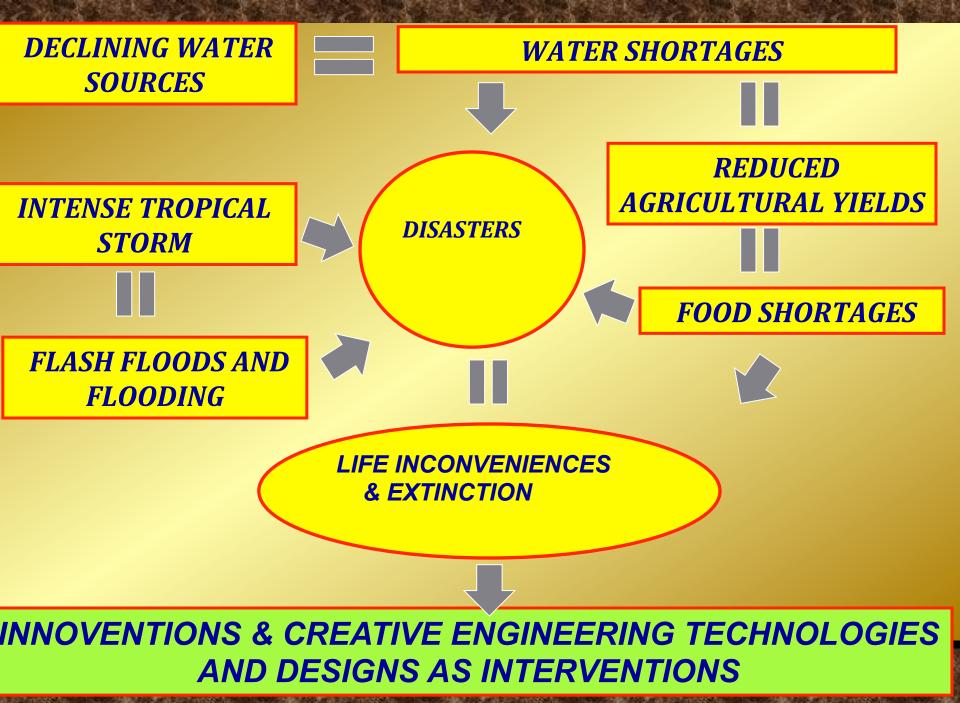
Impacts on Coastal Areas

Erosion of beaches Inundate coastal lands Costs to defend coastal communities

Species and Natural Areas

Shift in ecological zones Loss of habitat and species

PRESENTATION LIMITED TO THE FOLLOWING EFFECTS OR IMPACTS OF CLIMATE CHANGE?


SEVERE WEATHER:

MORE & INTENSE TROPICAL STORMS

FLOODING RESULTING TO DESTRUCTION OF PROPERTIES / LOSS OF LIVES

DECLINING WATER SOURCES = WATER SHORTAGES

REDUCED AGRICULTURAL YIELDS = FOOD SHORTAGES

PRESENT FILIPINO INNOVENTIONS & CONCEPT DESIGNS AS INTERVENTIONS VS CLIMATE CHANGE EFFECTS

INTENSE TROPICAL STORMS =

FLASH FLOODS, FLOODING

DESTRUCTION OF HOMES & BUILDING STRUCTURES

DECLINING WATER SOURCES = WATER SHORTAGES

REDUCED AGRICULTURAL YIELDS = FOOD SHORTAGES

THE CREATIVE/PRACTICAL OPTION

THE INNOVATIVE RAINWATER HARVESTING SYSTEM (IRHS) & COMPONENTS

NOTE: COMPLETE DETAILS IN SEPARATE

4 HOURS LECTURE MODULE

BASES / CONSIDERATIONS FOR RESEARCH /ADVOCACY!!!

WORLD OCCURRENCE: The intensity, frequency, and duration in weather patterns and precipitations due to climate change resulted to droughts in one sector and great floods in neighboring areas.

PHILIPPINES SITUATION: THE PHILIPPINES SEATS IN THE "
PACIFIC RIM OF FIRE" AND IS DESCRIBED AS ASIA'S "TYPHOON
MAT" AS THE SEAS AROUND IT SPAN DESTRUCTIVE TYPHOONS
AND MONSOON RAINS.

THE IRONY: Philippines rainfall provide more than 600 on tons (720 bcm), 11 times sufficient to ly annual water demand being gh devastating floods or natural

SOCIO -ECONOMIC CONSIDERATIONS

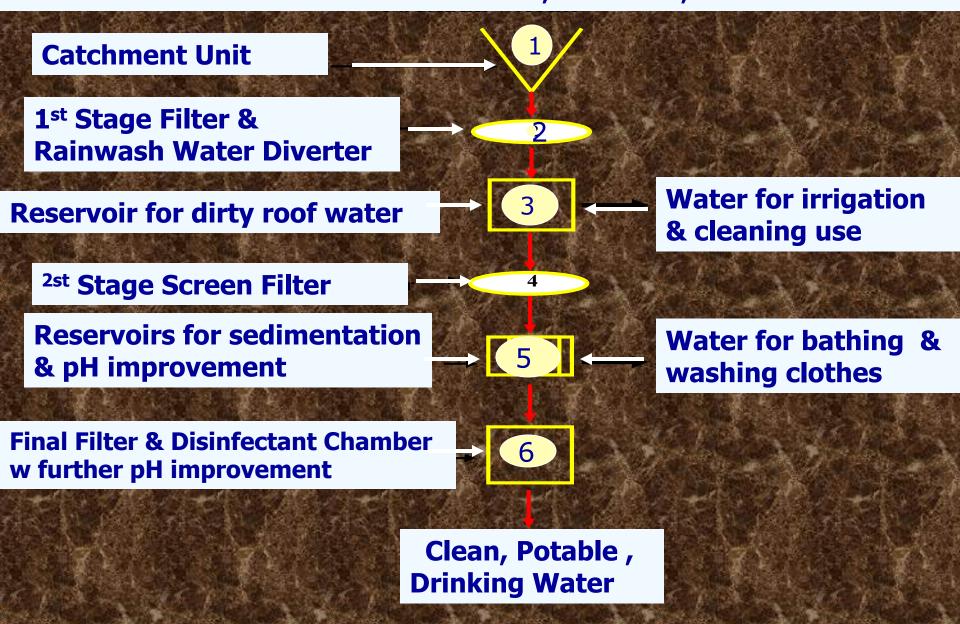
- 1.0 The 100 Million Filipinos need about 3,650 MCM of fresh water per year while Industries and Agricultural users need about 57,180 MCM or a Total Water Demand of 60,830 MCM.
 - The Potential Philippine Rainfall theoretically at 720,000 MCM is 11 times sufficient to supply the total annual water demand;
- 2.0 The use of Rainwater by Water Utilities even at 10 % of public water supply would have a tremendous economic effect and would secure surface and groundwater resources;
- 3.0 If every Filipino will use 1 cu. m. per month of rainwater, total savings will approximately be P 32 Billion per year;

LEGAL BASIS FOR THE INSTALLATION OF RAINWATER HARVESTING SYSTEM:

R.A. 6716 (1989)

: An Act Providing for the Construction of Water Wells, Rainwater

Collectors, Development of Springs and Rehabilitation of Existing

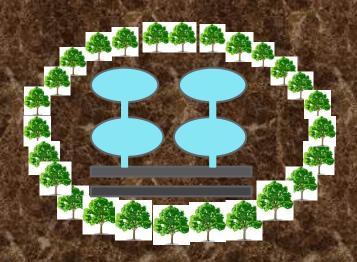

Water Wells in All Barangays in the Philippines.

DESCRIPTION OF THE INVENTION

PCCI, AMY National IP Awardee:
Manila Hotel, October 13, 2011
(Invention Letters Patent: 1-2008-000384)

This Rainwater Harvesting System Technology was developed to convert rainwater and contaminated water to potable water which will pass all the 16 PNSDW parameters under the Physical and Chemical Tests with pH improved from 5.8 – 6.3 pH to 7.1 - 7.8 pH, and passing the Microbiological Test Results inclusive of the Heterotrophic plate count.

INNOVATIVE RAINWATER HARVESTING SYSTEM: PROCESS OF CONVERTING RAINWATER INTO CLEAN, POTABLE, DRINKING WATER



THE INNOVATIVE RAINWATER HARVESTING SYSTEM (IRHS): A FILIPINO DEVELOPMENT

IRHS ABOVE GROUND MODULES ((DRHSM & ROOF CATCHMENT) AND

IRHS BELOW GROUND SILOS

IMPORTANCE OF THE INVENTION AS A CREATIVE INTERVENTION

- A) USEFUL FOR HOUSEHOLDS, EDUCATIONAL INSTITUTIONS, INDUSTRIES AND THE COMMUNITIES (BOTH URBAN AND RURAL)
- B) REDUCE COMPLETE DEPENDENCE FROM WATER PURIFYING CHEMICALS
- C) CAN CO-EXIST WITH WATER UTILITY PROVIDERS
- D) CAN BEST BE USED BY SCHOOL CHILDREN IN FAR FLUNG AREAS IN THE COUNTRY WHERE SAFE FRESH WATER IS NOT READILY AVAILABLE UTILIZING THEIR SCHOOL BUILDINGS AS CATCHMENT AREAS
- E) NECESSARY FOR LOCAL GOVERNMENT UNITS IN THEIR EVACUATION CENTERS DURING TIME OF EMERGENCIES AND CALAMITIES
- F) FULL UTILIZATION WILL BENEFIT FILIPINOS AND ENVIRONMENT, SAVING LIVES AND BECOMING OUR BEST OPTION TO CUSHION THE EFFECTS OF A WORST CASE SCENARIO OF FRESH WATER SHORTAGES, CLIMATE CHANGE AND DISASTERS.

There were at least six (6) important breakthroughs or discoveries during the R & D activities: Still continuing, based on available funds:

1.0 Different mix, up to the 4th generation, of the clay ceramic filters—utilizing local materials. Two (2) mixtures were found—to be acceptable with the 1.85-4.0 liters per hour flow rate.

2.0 The development of a 1,000 liters IRHS Module, consisting of 4 x 55 gallons P.E. tanks with steel platform, with double flare flexible piping connection, valves, sand trap filter, faucets, rainwash water diverter and the ceramic / clay filter in 20 liters plastic container.

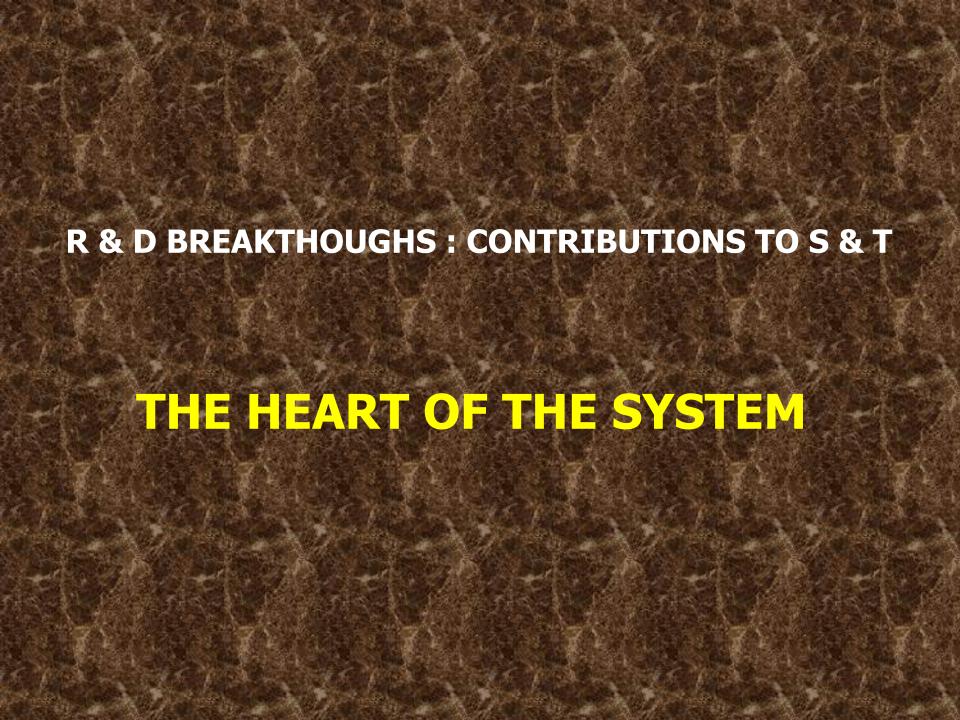
3.0 The development of a Rainwash Water Diverter, a cleaner rainwater to the IRHS Storage Tanks. This Patented Rainwash Water Diverter used discarded aluminum can as part of the rubber flap valve assembly, an environmentally friendly development.

Internal components of the Rainwash Water Diverter, utilizing the discarded aluminum can, tested and installed in residential and office buildings.

4.0 The use of the invented double flare flexible piping connection that ensure leak-proof system and ease of installation.

5.0 Other breakthroughs are the development of some portable equipment and machines needed to produce the ceramic candle and bucket type filters.

Gas Furnace



Bucket Filter Molding Unit

Candle Filter Molding Unit

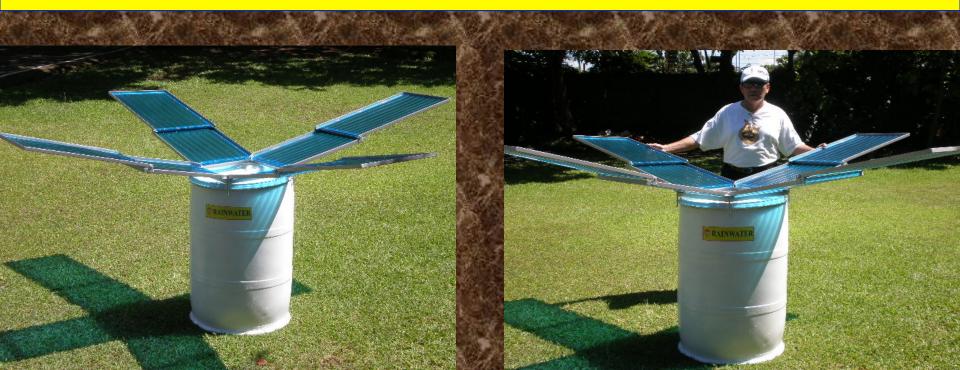
6.0 Finally, the breakthroughs in the experimentations on mineral rocks resulted to the correction of the pH of rainwater normally between 5.8 to 6.3 pH which is acidic. Pure water has a pH of 7.0. Experimentation on at least 16 mineral stones available in the locality revealed three (3) of these stones which can correct pH and raise it from 7.1 to 7.8 pH. The need to look into and test the efficacy of other mineral stones available locally that can improve pH from acidity to alkaline is obviously necessary.

R & D BREAKTHOUGHS: CONTRIBUTIONS TO S & T

The development of the Ceramic Clay Filters, Bucket and Candle, with anti-pathogen is the HEART of the System when clean, potable drinking water is required. This "Pinoy Technology" of rainwater harvesting and converting rainwater and contaminated water to potable water will pass all the 16 PNSDW parameters under the Physical and Chemical Tests with pH improved from 5.8 — 6.3 pH to 7.1 -7.8 pH, and passing the Microbiological Test Results inclusive of the Heterotrophic plate count.

THE INNOVATIVE RAINWATER HARVESTING SYSTEM (IRHS): DIFFERENT DESIGNS IN OPERATION

R &D STARTED IN 1981 USING RAINWATER FOR IRRIGATION AND CLEANING AND NOW 100% RAINWATER UTILIZATION INCLSUSIVE OF BATHING & DRINKING USES SINCE 2008

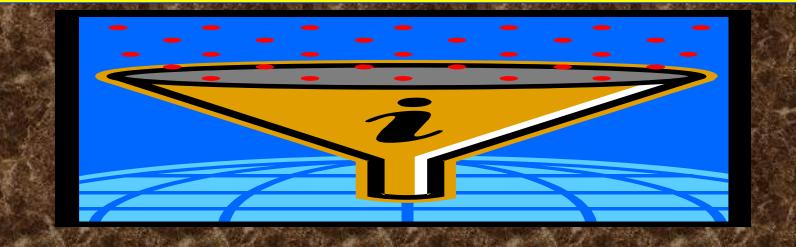


DIRECT RAINWATER HARVESTING MODULE

FOLDABLE RAINWATER CATCHMENT DESIGN 1

FOLDABLE RAINWATER CATCHMENT DESIGN 2

FOLDABLE INVERTED UMBRELLA CATCHMENT UNIT



RAINWATER HARVESTING MODULE USING THE ROOF AS CATCHMENT AREA AND PIPELINE CONNECTED TO WATER UTILITY LINE WITH CHECK VALVE

PHYSICAL / CHEMICAL MICROBIOLOGICAL

TEST RESULTS

ENVIRONMENTAL-HEALTH LABORATORY SERVICE COOPERATIVE

50 Holy Spirit Drive, Don Antonio Heights, QC Tel. 428-2698 / Telfax 931-0838 / Res. 433-5777 DOH Accreditation No. 024

PHYSICAL / CHEMICAL TEST RESULT

Amecos-Dost Project

#34 Alma Jose St., Zabarte Rd., Caloocan City

Attention: Dr. Antonio F. Mateo

TR # 18485

SR # 0808317

Date Issue : August 11, 2008

Sample Description: Rain Water

Sample Source : Others - Filtered RW @ RH-1

Date Submitted : August 05, 2008

Parameters	Unit	Method of Detection	Results	PNSDW**** Standards	Remarks
Physical					
Color	TCU	2120 Visual Comparison-Chloroplatinate*	3	5	PASSED
Odor	-	2150 Threshold Odor Test*	unobjectionable	unobjectionable	PASSED
Taste	_	2160 Flavor Threshold Taste*	not done	unobjectionable	-
Turbidity	NTU	2130 Nephelometric*	4.2	5	PASSED
Chemical					
pH @ 25.0 °C	-	4500-H+ Electrometric*	7.10	6.5-8.5****	PASSED
Total Hardness as CaCO3	mg/L	2340 EDTA Titrimetric*	11.58	300	PASSED
Chloride	mg/L	4500-Cl- Argentometric*	8.42	250	PASSED
Iron	mg/L	3111 Flame Atomic Absorption Spectometry*	ND(MDL=0.05 mg/L)	1.0	PASSED
Manganese	mg/L	3111 Flame Atomic Absorption Spectometry*	ND(MDL=0.01 mg/L)	0.5	PASSED
Sulfate	mg/L	4500-SO4-2 Turbidimetric*	1.14	250	PASSED
Total Dissolved Solids	mg/L	2540 Gravimetric*	58	500****	PASSED
Nitrate	mg/L	4500-NO3- Electrode Method*	ND(MDL=0.10 mg/L)	50	PASSED
Fluoride	mg/L	4500-F- Ion Selective*	ND(MDL=0.02 mg/L)	1.0	PASSED
Lead	mg/L	3111 Flame Atomic Absorption Spectometry*	ND(MDL=0.006 mg/L)	0.01	PASSED
Copper	mg/L	3111 Flame Atomic Absorption Spectometry*	ND(MDL=0.016 mg/L)	1.0	PASSED
Chromium (Total)	mg/L	3111 Flame Atomic Absorption Spectometry*	ND(MDL=0.02 mg/L)	0.05	PASSED

Note: Test result is based on sample as received.

ND - Not Detected, MDL - Method Detection Limit

****Limit applies only to sample description printed above

References:

*Standard Methods for the Examination of Water & Wastewater, American Public Health Association,

American Water Works Association, 21st ed., 2005

**Validate Method

***Philippine National Standards for Drinking Water, 2007

-CBD when

Christian Bryan G. Dulin 0010078 Chemist Marilou I Sumera, Chem. 04041

Laboratory Head

Date Tested: September 8, 2008

Date Tested: August 2, 2008

SOURCE	Standard	w/ Antibacterial Agent	Result	SOURCE	w/ Antibacterial Agent	Result
RW Filtered @ CD-1 a) Microbiological Test				RW Filtered @ CD-80B a) Microbiological Test		
Total Coliform	less than 1.1	less than 1.1	Passed	Total Coliform	less than 1.1	Passed
Fecal Coliform	less than 1.1	less than 1.1	Passed	Fecal Coliform	less than 1.1	Passed
b) Physical / Chemical Test				b) Physical / Chemical Test		
Color	5	3	Passed	Color	3	Passed
Odor	unobjectionable	unobjectionable	Passed	Odor	unobjectionable	Passed
Taste	unobjectionable	unobjectionable	Passed	Taste	unobjectionable	Passed
Turbidity	5	1.8	Passed	Turbidity	1.8	Passed
pH	6.5-8.5****	8.0	Passed	pН	8.4	Passed
Total Hardness as CaCO3	300	zero	Passed	Total Hardness as CaCO3	zero	Passed
Chloride	250	zero	Passed	Chloride	zero	Passed
Iron	1.0	ND(MDL=0.016mg/L)	Passed	Iron	ND(MDL=0.016mg/L)	Passed
Manganese	0.5	ND(MDL=0.11mg/L)	Passed	Manganese	ND(MDL=0.11mg/L)	Passed
Sulfate	250	ND(MDL=0.15mg/L)	Passed	Sulfate	ND(MDL=0.15mg/L)	Passed
TDS	500****	10	Passed	TDS	20	Passed
Nitrate	50	0.10	Passed	Nitrate	0.10	Passed
Flouride	1.0	0.10	Passed	Flouride	0.10	Passed
Lead	0.01	ND(MDL=0.0013mg/L)	Passed	Lead	ND(MDL=0.0013mg/L)	Passed
Copper	1.0	ND(MDL=0.006mg/L)	Passed	Copper	ND(MDL=0.006mg/L)	Passed
Chromium	0.05	ND(MDL=0.001mg/L)	Passed	Chromium	ND(MDL=0.001mg/L)	Passed

ENVIRONMENTAL-HEALTH LABORATORY SERVICE COOPERATIVE

50 Holy Spirit Drive, Don Antonio Heights, QC Tel. 428-2698 / Telfax 931-0838 / Res. 433-5777 DOH Accreditation No. 024

MICROBIOLOGICAL TEST RESULT

TR # 18133

SR # 08072815

Date Issue : August 02, 2008

Amecos-Dost Project

#34 Alma Jose St., Zabarte Rd., Caloocan City

Attention: Dr. Antonio F. Mateo

Sample Description: Rain Water

Sample Source : Others - Rain Water from DRWCM Filtered

Date Submitted : July 31, 2008

Test	Unit	Method of Analysis	Results	PNSDW Standards	Remarks
Total Coliform	MPN/100 mL	Multiple Tube Fermentation Technique	less than 1.1	less than 1.1	PASSED
Fecal Coliform	MPN/100 mL	Multiple Tube Fermentation Technique	less than 1.1	less than 1.1	PASSED

Note: Test result is based on sample as received and is valid for (1) one month from date of issue.

Reference: Standard Methods for the Examination of Water & Wastewater, American Public Health Association,

American Water Works Association, 21st ed., 2005
*Philippine National Standards for Drinking Water - 2007

Myla M. Arzobal RMT 48762 Microbiologist Marilou J. Sumera, Chem. 04041

Laboratory Head

ENVIRONMENTAL-HEALTH LABORATORY SERVICE COOPERATIVE

50 Holy Spirit Drive, Don Antonio Heights, QC Tel. 428-2698 / Telfax 931-0838 / Res. 433-5777 DOH Accreditation No. 024

MICROBIOLOGICAL TEST RESULT

TR # 19261

SR # 08081125

Date Issue : August 14, 2008

Amecos-Dost Project

#34 Alma Jose St., Zabarte Rd., Caloocan City

Attention: Dr. Antonio F. Mateo

Sample Description: Rain Water

: Others - Rain water from FRHM Filtered @ CD 2 Sample Source

Date Submitted : August 12, 2008

Test	Unit	Method of Analysis	Results	PNSDW Standards	Remarks
Heterotropic Plate Count	CFU/mL	Pour Plate Method	284	less than 500	PASSED

Note: Test result is based on sample as received.

Reference: Standard Methods for the Examination of Water & Wastewater, American Public Health Association,

American Water Works Association, 21st ed., 2005

*Philippine National Standards for Drinking Water - 2007

Myla M. Arzobal RMT 48762

Microbiologist

Marilou I. Sumera, Chem. 04041 Laboratory Head

SOME INNOVATIVE RAINWATER HARVESTING SYSTEM INSTALLATIONS, DESIGNS, USES

4000 Liters Innovative Rainwater Harvesting System: Polangui, Albay Installation

24,000 Liters IRHS Installation: ASIA PACIFIC CHRISTIAN COLLEGE AND SEMINARY, Montalban Seminary / School

SOME IRHS INSTALLATIONS

6,000 Liters IRHS Installation: MARIKINA SPORT / EVACUATION CENTER Marikina City, January 11,2011

ADDITIONAL 12,000 LITERS IRHS INSTALLATIONS: ONE (1) MODULE FOR THE OFFICE OF THE MAYOR & ONE(1) MODULE FOR MARIKINA ENVIRONMENTAL MANAGEMENT OFFICE, Marikina City, January 28,2012

SOME IRHS INSTALLATIONS

DOGHOUSE WITH 5,000 LITERS IRHS ON 2ND LEVEL, INSTALLED AND COMPLETED ON JULY 2, 2012

LUNETA GREEN TOILET

A PROJECT OF THE NATIONAL PARK DEVELOPMENT COMMITTEE -

GREEN TOILET & RAINWATER CISTERNS WITH IRHS

COMPLETED ON JULY 25, 2012. FOURTEEN (14) GREEN TOILETS WITH 6,000 LITERS MODULES IRHS IN LUNETA NATIONAL PARKS UNDER THE NATIONAL PARKS DEVELOPMENT COMMITTEE

INNOVATIVE RAINWATER HARVESTING SYSTEM INSTALLATIONS

9,000 Liters Innovative Rainwater Harvesting System: Macampao Beach Resort Installations, Cabangan, Zambales, completed installation November 30, 2015

INNOVATIVE RAINWATER HARVESTING SYSTEM INSTALLATIONS

500 Liters Innovative Rainwater Harvesting System: AMECOS TREE HOUSE with SOLAR DC POWER / LED LIGHTINGS, Constuction Completed March 7, 2017

INNOVATIVE RAINWATER HARVESTING SYSTEM

TIFE SAVING KITS

DEVELOPED FOR EMERGENCY USE, FOR EVACUTIOAN CENTERS AND RESCUE OPERATION

PORTABLE EMERGENCY WATER FILTER ASSEMBLY

REGULAR ASSEMBLY

ASSEMBLY WITH BISCUITS & CANDIES

PORTABLE LIFE SAVING WATER FILTER CANISTER

REGULAR WATER FILTER CANISTER

WATER FILTER CANISTER W / BISCUITS AND CANDIES

THE INNOVATIVE RAINWATER HARVESTING SILOS

"ENGINEERING INTERVENTIONS AGAINST TYPHOONS, FLASHFLOODS,&OTHER DISASTERS"

A CREATIVE CONCEPT DESIGN

MULTI-USES

* FISH POND SILO * DUCK POND SILO * IRRIGATION SILO * POTABLE
WATER * *MUD TRAP SILO * FLASH FLOOD SILO * WATER
SURGE SILO * CADAVER SILO *OTHERS *

NOTE: COMPLETE DETAILS IN SEPARATE

4 HOURS LECTURE MODULE

DAMS VERSUS INNOVATIVE RAINWATER (IRH) SILOS

FUNCTIONAL SIMILARITIES

DAM & IRH SILOS REGULATES WATER SUPPLY

- * BOTH COLLECT FRESH WATER DURING PERIODS OF HEAVY RAINFALLS
- * BOTH CAN BE USED TO CONTROL FLOOD WATER
- * BOTH CAN SUPPLY A REGULATED AMOUNT OF WATER TO SURROUNDING AREAS FOR IRRIGATION AND DOMESTIC USE
- * BOTH PROVIDE A BUFFER TO EXTREME OR IRREGULAR WE ATHER

ADVANTAGES & DISADVANTAGES DAM

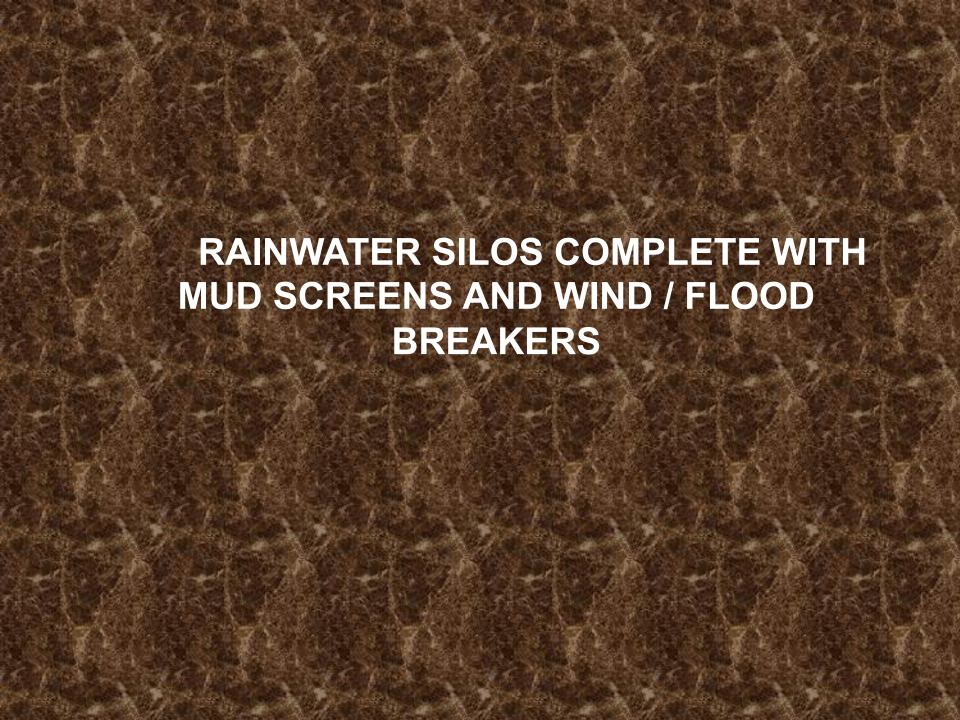
ADVANTAGES:

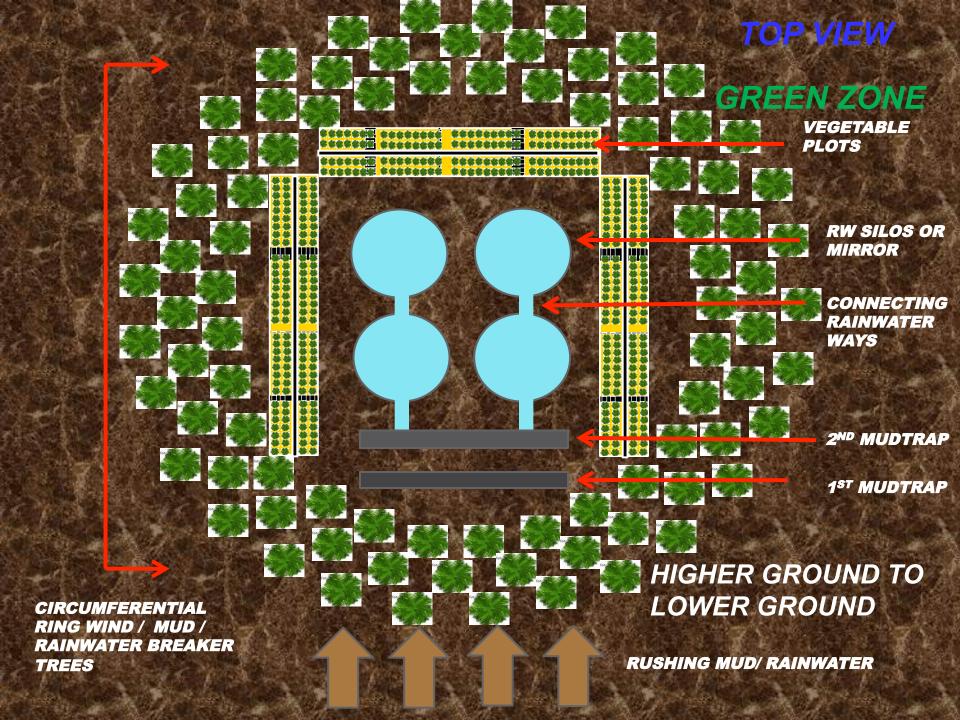
- * CAN BE USED TO GENERATE HYDROELECTRIC POWER (CLEAN ENERGY)
- * A SOURCE OF TOURISM IN OTHER COUNTRIES

DISADVANTAGES

- * SURROUNDING DRY AREAS WILL BE FLOODED
- * DISPLACEMENT OF LOCAL POPULATION
- * LOSS OF USE OF LAND PREVIOUSLY ACCESSIBLE DISRUPTING AGRICULTURAL ACTIVITIES
- * DISRUPTS ECOSYSTEMS: DISPLACES
 EXISTING WILDLIFE

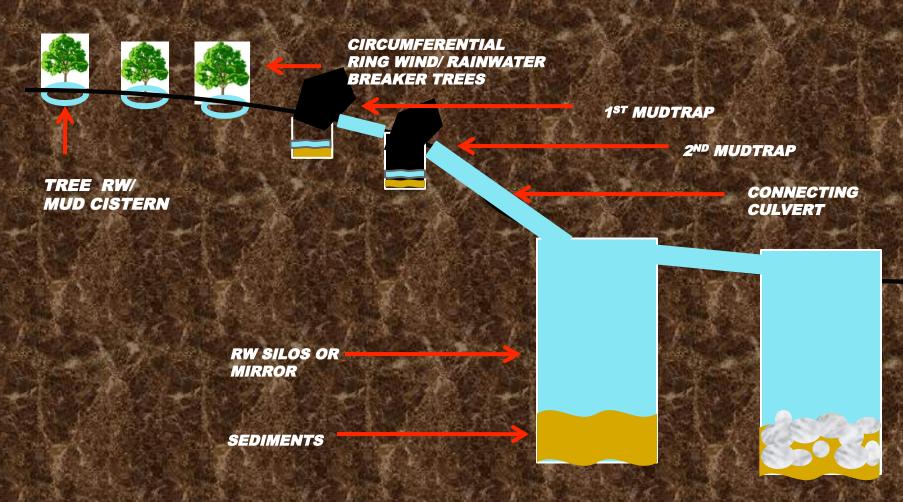
ADVANTAGES & DISADVANTAGES IRH SILOS

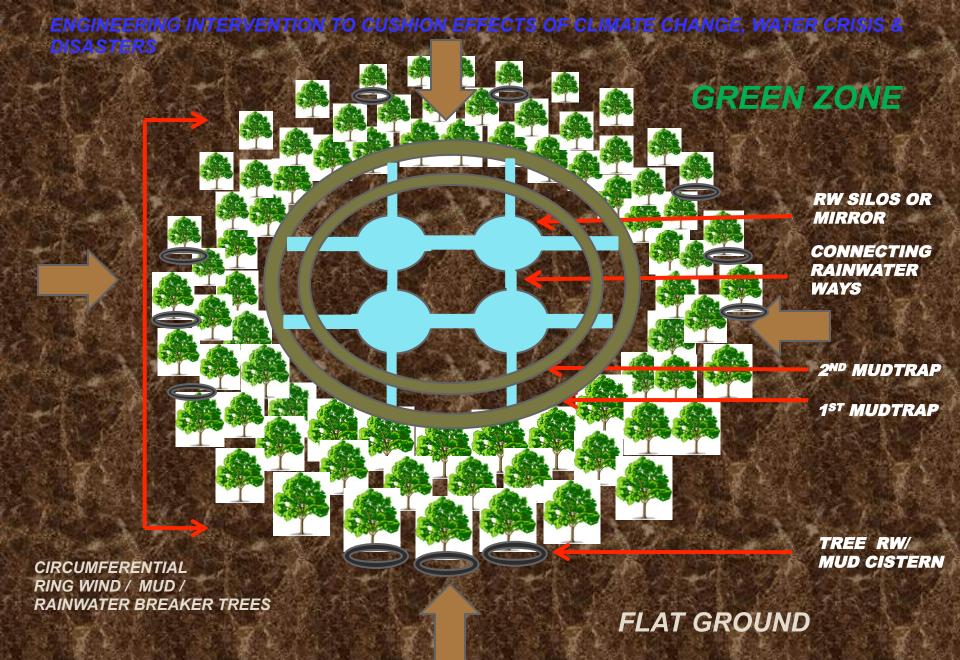

ADVANTAGES:


- * PRACTICAL INTERVENTION TO FLOODING PROBLEMS
- * NON-DISPLACEMENT OF LOCAL POPULATION
- * LAND MAINTAINCE ITS ACCESSIBILITY
- * IMPROVED AGRICULTURAL PRODUCTIVITIES
- * NO RISK OF EARTHQUAKE DEVASTATING EFFECTS
- * NON DISPLACEMENT OF WILDLIFE
- * FLOW OF RIVER REMAIN UNOBSTRUCTED THUS MAINTAINING FISH LIFE INCLUDING MIGRATORY FISH POPULATION.
- * IMPROVE ECOSYSTEMS

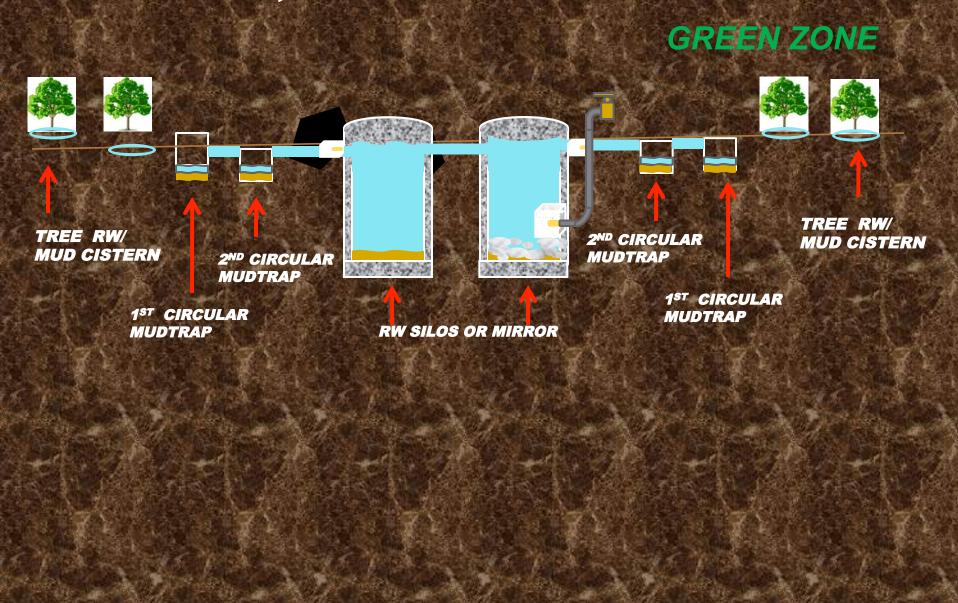
ADVANTAGES & DISADVANTAGES IRH SILOS

DISADVANTAGES:

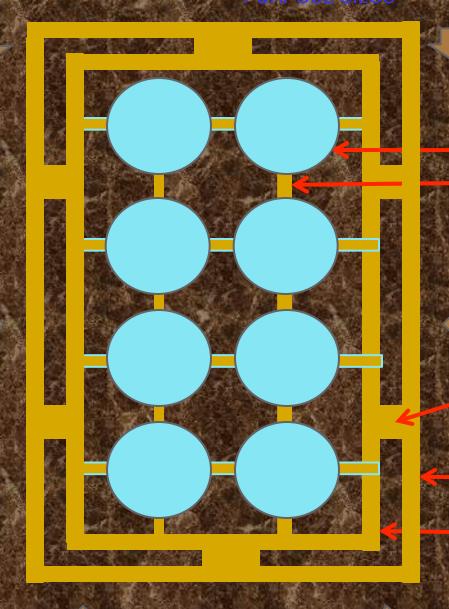

- * NORMALLY NOT DESIGNED TO BE USED TO GENERATE HYDROELECTRIC POWER
- * RELY ENTIRELY ON PRECIPITATIONS IN THE AREA AS ITS SOURCE
- * HOLDING CAPACITY LIMITED ON AREA DESIGN



CROSS SECTIONAL VIEW OF GREEN ZONE - HIGHER GROUND TO LOWER GROUND AS CREATIVE ENGINEERING INTERVENTION AGAINST TYPHOONS, FLASH FLOODS , EARTHQUAKES AND OTHER DISASTERS


GREEN ZONE

RUSHING MUD/ RAINWATER


CROSS SECTIONAL VIEW OF GREEN ZONE - FLAT SURFACE AS ENGINEERING INTERVENTION TO CUSHION EFFECTS OF CLIMATE CHANGE, WATER CRISIS & DISASTERS

ENGINEERING INTERVENTION IN URBAN FLOOD PRONE AREAS / ADDITIONAL WATER SOURCE : INNOVATIVE RAINWATER MULTI-PURPOSE SILOS **GREEN ZONE** URBAN CIRCULAR DESIGN **IRHS SILOS** CONNECTING **RAINWATER** WAYS CONNECTING **MUD TRAPS** 1ST MUDTRAP 2ND MUDTRAP **FLAT GROUND**

RUSHING MUD/ RAINWATER

ENGINEERING INTERVENTION: SERIES & PARALLEL PROTECTIVE MULTI-PURPOSE SILOS

GREEN ZONE

URBAN RECTANGULAR DESIGN

IRHS SILOS

CONNECTING WATER WAYS

CONNECTING FILTER TRAPS


1ST FILTER TRAP

2ND FILTER TRAP

RUSHING OVER FLOW WATER

INNOVATIVE RAINWATER MULTI-PURPOSE SILOS UNDER FOOTBALL FIELD & OPEN PARKING AREAS; SIDES OF COVERED COURTS IN COMBINATION WITH IRHS ABOVE GROUND, NEAR, DAMS, DIKES & SEA WALLS AS PROTECTIVE OPTIONS



PARKING / OPEN AREAS

C OVERED COURT

DAM

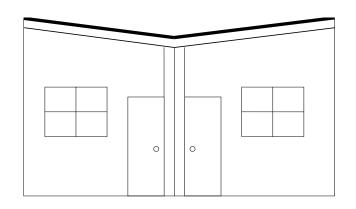
DIKE

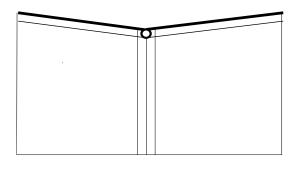
SEA WALLS

DETAILS OF CONCEPT DESIGN CONSTRUCTION, VOLUME AND COST ESTIMATES IN A SEPARATE MODULE

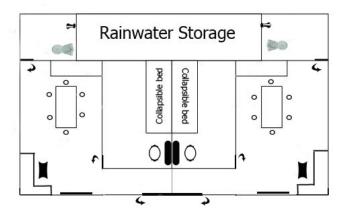
THE FUTURE?

CREATIVE PROPOSALS AS INTERVENTIONS

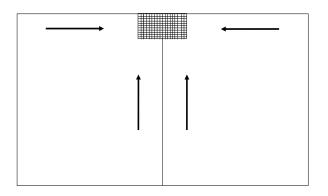

URBAN HOUSING & BUILDING DESIGNS FOR RAINWATER HARVESTING AND TO WITHSTAND SUPER TYPHOONS


FEATURES

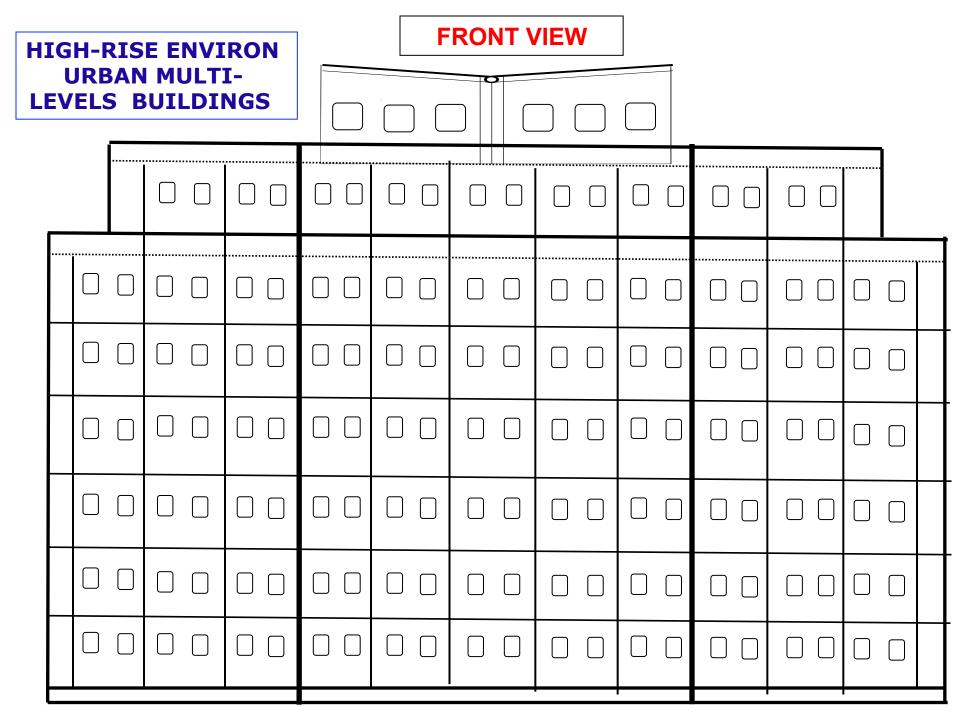
NEW ROOFING DESIGN; COMMUNAL RAINWATER HARVESTING; COMMUNAL SEPTIC TANK;

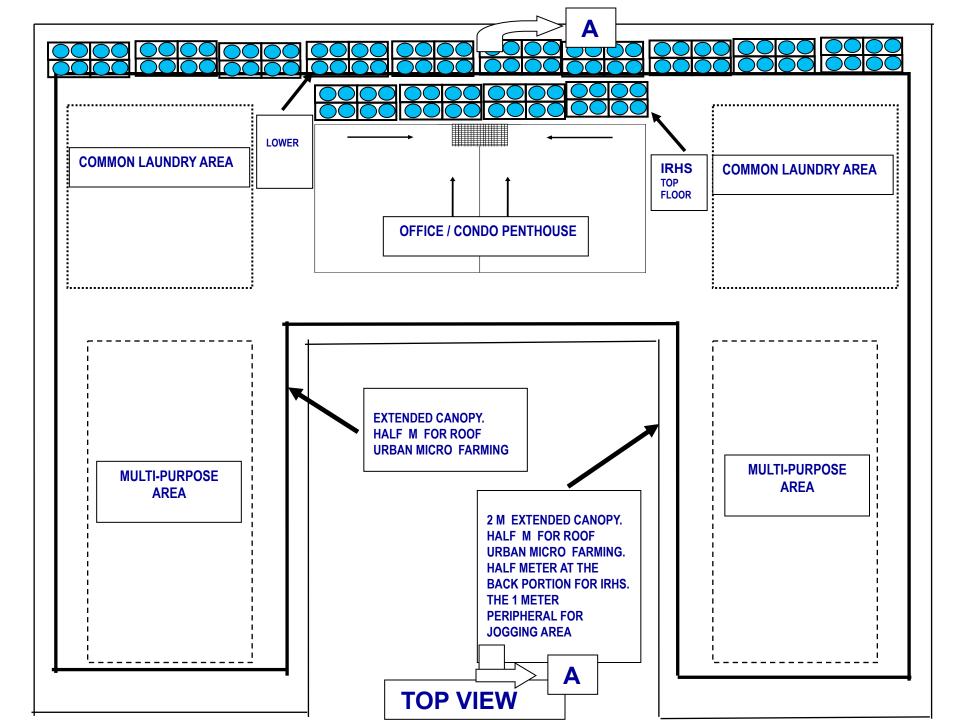

LEAK-PROOF FLEXIBLE PLUMBING LINES

SAMPLE DESIGN OF A DUPLEX LOW COST HOUSE REGULAR SIZE 4m. X 16 m. = 64 sq.m. or 32 sq. m/ unit

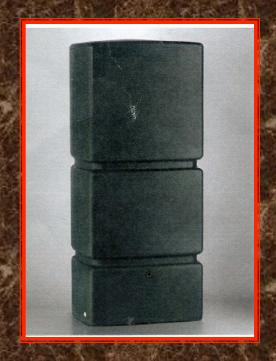


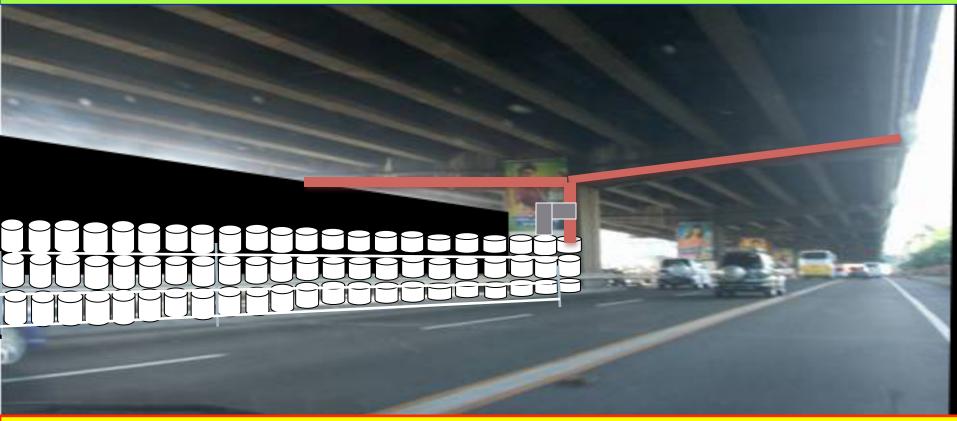
FRONT VIEW




BACK VIEW

CUT –OUT VIEW


TOP VIEW



FUTURE RAINHARVESTER TANKS FOR SIDEWALLS AND FENCES

INSTALLATION OF IRHS UNDER THE SKYWAYS FOR USE BY THE COMMUNITIES, MOTORISTS AND FIRE DEPARTMENTS: A RECOMMENDATION

ESTIMATED HARVEST CAPACITY OF A 30 M X 40 M SPAN = 2,300 CU.M. / YR. OR 192 CU.M /MO. ESTIMATED RAINWATER HARVESTER 10 KMS DISTANCE WITH ALTERNATE HARVESTER 192 MODULES SET

RAINWATER HARVEST = 24,000 CU.M./MO OR 288,000 CU.M./YR.= GOOD FOR 8.000 INHABITANTS

REDUCED
AGRICULTURAL YIELDS

FOOD SHORTAGES

IRRIGATION INNOVENTIONS

URBAN GARDENING /FARMING

ROOF TOP AND URBAN FARMING USING RAINWATER COLLECTED - December 8,2011

ROOF TOP FARMING USING RAINWATER COLLECTED

ROOF TOP GARDENING

VISIT OF DAUGHTER FROM THE U.S JANUARY DEC. 9, 2017

"The best time to plant a tree was 20 years ago. The next best time is today."

- Chinese proverb

CONDOL, UBE, STARFRUIT, MANGOES & COCONUT HARVESTED USING RAINWATER AS IRRIGATION

CONDOL, UBE, STARFRUIT, MANGOES & COCONUT HARVEST IRRIGATED USING RAINWATER

OTHER CREATIVE RESEARCH RECYCLING PLASTIC BOTTLES

IRRIGATION FOR ROOF TOP / URBAN FARMING USING RAINWATER CONTAINER

RECYLING PLASTIC BOTTLES AS PRESSURE, OSMOSIS OR DRIP IRRIGATION FOR ROOF TOP & URBAN FARMING

PIN HOLE LOCATED ABOUT 1/2" OR 2CM FROM THE BOTTOM


RECYCLING PLASTIC BOTTLES AS PLANT POTS WITH PERFORATION: METHOD 1

10 CM (4") TO 12 CM (5")

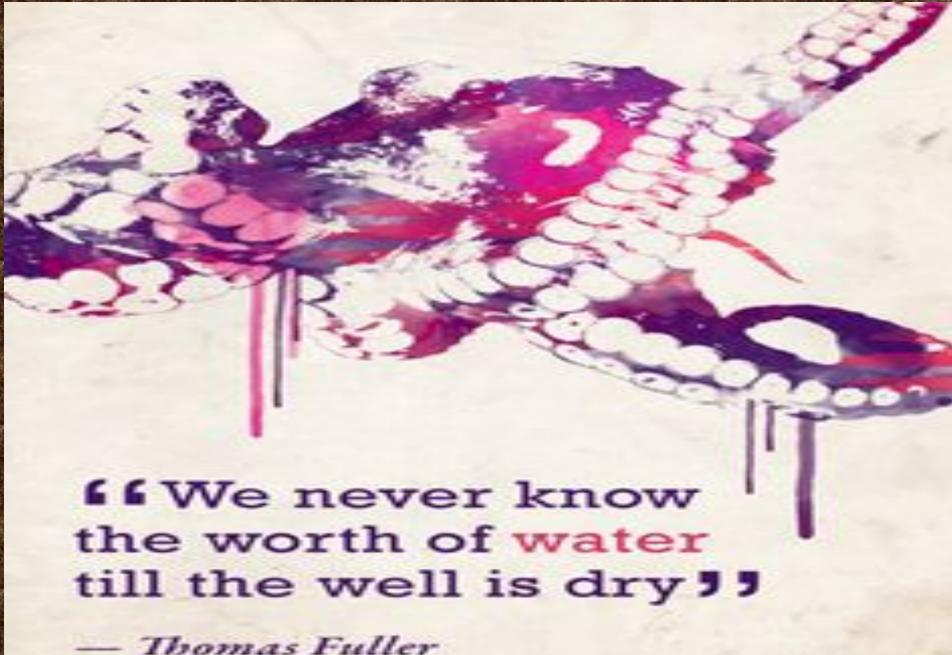
8 CM (3")

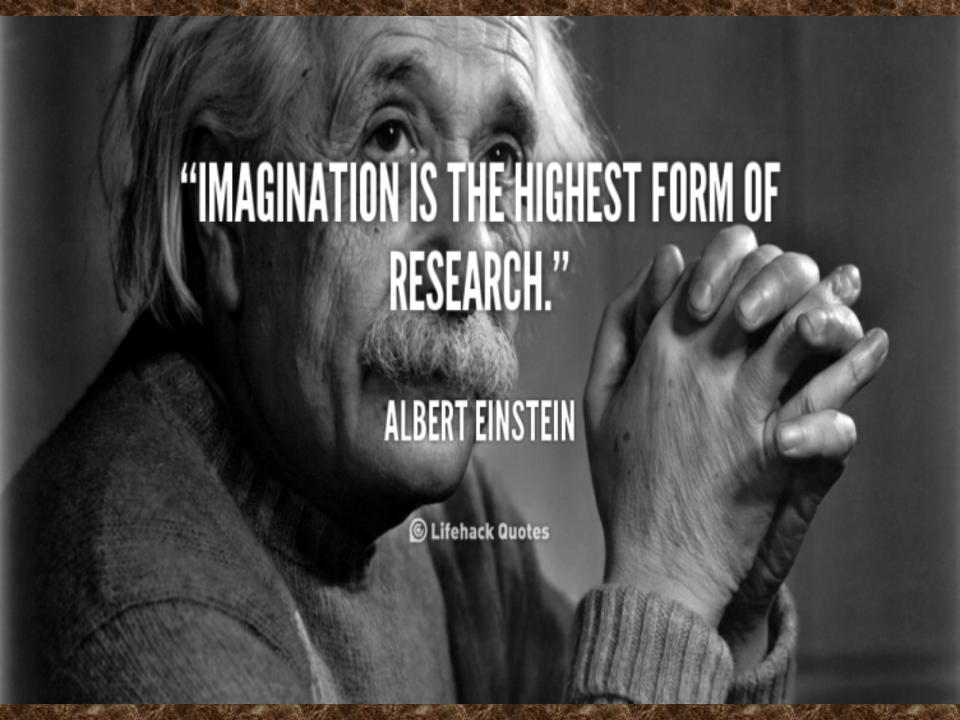
METHOD 2

FOLDED CLOTH SIZE 20 CM X 20 CM (8" X 8")

PREPARING PLASTIC BOTTLES AS PULSE IRRIGATION

RECYLCED PLASTIC BOTTLES AS PULSLE IRRIGATION





Thomas Fuller

REMEMBERIU

"PEOPLE WHO GROW UP WITHOUT A SENSE OF HOW YESTERDAY HAS AFFECTED TODAY ARE UNLIKELY TO HAVE A STRONG SENSE OF HOW TODAY AFFECTS TOMORROW"

CONCLUDING STATEMENT

LET ME STATE THAT CLIMATE CHANGE EFFECTS WILL REACH ITS WORST DIMENSIONS IN THE VERY NEAR FUTURE.

DISASTERS ARE INEVITABLE AND BOUND TO HAPPEN.

WITH CREATIVE INNOVENTIONS AND ANTICIPATION COUPLED WITH THE GOOD INTENTION TO HELP, WE WILL BE ABLE TO CUSHION THE EFFECTS OF THESE IMPENDING DISASTERS.

PRACTICAL / DOABLE / APPROPRIATE INNOVENTIONS ARE EXISTING AND AVAILABLE AS DISCUSSED.

EVERYONE HAS THE RESPONSIBILITY TO TAKE ACTION AND DO HIS PART,FOR WHATEVER PRO-ACTIVE OPTIONS WE IMPLEMENT, WILL BE OUR

LEGACY FOR THE SUCCEEDING GENERATIONS AND ...

MANKIND SURVIVAL

THANK YOU! WISHING EVERYONE AN ENJOYABLE AND CREATIVE INNOVENTIONS DAY

SEMINAR 23 SGRA'S KKK RESEARCH ADVOCACY MAY 7, 2017, AMECOS LECTURE ROOM

INNOVENTIONS VS CLIMATE CHANGE EFFECTS

WORLD INTELLECTUAL PROPERTY ORGANIZATION (WIPO) 1994 BEST INVENTOR
RESEARCH FELLOW, SINGAPORE ROYAL INSTITUE OF ENGINEERS
RAINWATER HARVESTING SYSTEM / ENGINEERING CONSULTANT

COUNTRIES ARE PROGRESSIVE WHOSE GOVERNMENT HAVE POLICIES AND PROGRAMS WHICH ENCOURAGE THE ESSENTIAL CREATIVITY OF MAN. THE LACK OF RESOURCES CAN BE OVERCOME BY THE DEPTH OF COMMITMENT OF THE PEOPLE WITH THE MISSION AND VISION OF ACHIEVING GRANDIOSE GOALS....

SUCCESS AND PROGRESS ARE THEREFORE ABOUT GOOD GOVERNANCE AND POLICIES, THE COMMITMENT AND GOOD INTENTIONS OF THE HUMAN SPIRIT AND THE CREATIVITY OF THE HUMAN RESOURCE

WATER SHORTAGES

WATER SOURCE DEVELOPMENT & EFFICIENT WATER UTILIZATION

CREATIVE ENGINEERING
INTERVENTION

LEAK CONTROL & RECYCLING