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Background
	 By 2050, the global population is expected to reach 
9.1 billion, requiring approximately 70% additional 
food production to sustain the entire human race[1].In 
recent years, against the backdrop of the Russian-
Ukrainian war, the COVID-19 pandemic, and extreme 
weather events, the increasing demand for food produc-
tion has raised concerns, with food insecurity rates 
rising after decades of decline[1].
	 Over the past few decades, most countries have 
focused on increasing food production as a policy to 
address the continuously growing food demand. 
However, post-harvest loss (PHL) is a critical issue that 
has not received the necessary attention, with less than 

5% of research funding allocated to this issue in recent 
years. A survey of 1,890 grain merchants in 54 regions 
across 9 provinces in China shows that grain storage 
conditions have the greatest impact on post-harvest 
grain loss[2]. 5% of the country’s total grain output is due 
to losses during post-harvest storage[3]. Based on the 
grain output over 2023, the loss during the storage phase 
reached 34.7 billion kilograms, equivalent to the output 
of 43,500 km2 of high-yield farmland, enough to feed 
860 million people for a year. Therefore, reducing food 
losses during the storage phase is one of the most practi-
cal and effective ways to ensure China’s food security.
	 Grain temperature is one of the important indicators 
for monitoring the storage status. Ensuring accurate 
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granary, leading to the creation of feature maps with 
localized spatial relevance. These feature maps can 
effectively identify key spatial patterns such as tem-
perature fluctuations, local hotspots, or cold spots. 
Multiple such feature maps are stacked and combined to 
form more complex feature representations. Through 
several hidden layers, MLP is designed to understand 
the intricate functional relationships among various fea-
tures. This multi-layer learning strategy allows the 
model to capture more complex and abstract informa-
tion from the extracted features, such as the global dis-
tribution of the temperature field or long-term trends in 
temperature changes. In this model, the role of the atten-
tion mechanism is particularly evident. Through weight 
allocation, it can automatically identify which areas (or 
features) are more critical during interpolation[6]. For 
example, when a region exhibits abrupt temperature 
spikes or dips, the attention mechanism intensifies its 
concentration on that specific area, ensuring precise 
interpolation outcomes. Validations have shown that 
this method enhances the precision of spatial interpola-
tion techniques.

Study area and data source
	 Hanzhong City is located at the geographical center 
of China’s territory, belonging to the subtropical climate 
zone. The Qinling Mountains to the north serve as a 
shield, preventing cold fronts from easily entering, 
resulting in a mild and moist climate. In the ecology 
areas of stored grain in China, it belongs to the fourth 
category: North of China medium hot and dry ecology 
area of stored grain, which makes it an advantageous 
location for grain silos, as depicted in Fig. 1. The left 
image shows the seven ecology areas of stored grain in 
China, while the right image displays the latitude and 
longitude coordinates of Hanzhong City, Shaanxi 
Province.
	 As the predominant staple food crop worldwide, rice 
sustains more individuals than any other crop. Forecasts 
from the International Rice Research Institute (IRRI) 
project a 50% escalation in global rice demand by 
2050[7]. To address this, the present study employs rice 
temperature data from the Hanzhong No. 25 granary, 

measurement of the temperature is foundational to 
maintaining grain safety[4]. Temperature can influence 
the prevalence of pests and microorganisms within 
grain storage. If even a minor heating event occurs 
within the grain and isn’t addressed promptly, it can 
lead to drastic humidity and temperature fluctuations 
inside the storage, resulting in grain condensation, mold 
formation, and subsequently, substantial grain losses[5].
	 At present, grain storages across China have imple-
mented arrays of temperature sensors within the silos, 
enabling real-time monitoring of internal grain tem-
peratures. Due to practical constraints and setup costs, 
only a select number of sensors can be placed. This 
doesn’t provide a comprehensive view of the tempera-
ture distribution within the silo, and monitoring is 
mainly limited to the areas equipped with sensors. 
Areas without sensors could be critical zones where 
grains undergo respiration and heat generation. Grain is 
a poor conductor of heat, leading to slow heat transfer 
within the grain pile. If certain sections experience tem-
perature anomalies due to rapid pest infestations or 
mold growth, by the time adjacent temperature sensors 
detect these changes, it could potentially be too late. 
Therefore, it’s essential to utilize spatial interpolation 
methods to address the gaps in data from sampling 
points. By establishing a robust interpolation system, 
we can identify areas with temperature anomalies, 
implement preventive measures, and aim to minimize 
grain losses while guaranteeing the quality and safety of 
the stored grain.
	 This study delves deep into the characteristics of 
grain temperature spatiotemporal sequence data, such 
as high dimensionality, non-linearity, strong spatiotem-
poral correlation, and dynamic changes, establishing a 
valid and efficient grain temperature interpolation 
model. In the realm of grain storage, our study pioneers 
an in-depth exploration and introduces a grain tempera-
ture interpolation method based on CNN, Attention, 
and MLP. This method excels in processing non-linear 
spatial data and doesn’t have particular prerequisites for 
sample data distribution and assumptions. Through con-
volutional operations, CNNs are able to discern the rela-
tionships between proximate temperature points in the 
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since, by 10 a.m. in Hanzhong, the temperature tends to 
stabilize, with a diminished influence from the cold air 
of the night or the warmth of the daytime, ensuring a 
more reliable temperature reading. A total of 15,120 
temperature data points, corresponding to 135 represen-
tative days, were compiled following the exclusion of 
erroneous records and the imputation of missing values. 
In chronological order, the first 90% of the data will be 
used for model training and the remaining 10% will be 
used for model testing.

Fig. 2.	 The external environment of the granary

managed by China Grain Reserves Group Company.
	 The Hanzhong silo, measuring 29.7 meters in length, 
14.46 meters in width, and with a grain surface height of 
4.9 meters, is a common type of tall flat granary found 
in China. The surroundings outside the granary and the 
internal grain storage environment are shown in Fig. 2. 
and Fig. 3. respectively. The sensor network is regular-
ized arranged across four layers inside the granary, with 
28 sensors on each layer, totaling 112 sensors for the 
entire bin. Four rows of temperature measurement 
cables are arranged from south to north with a longitu-
dinal distance of 4.5m between them. Additionally, 
seven columns are placed from east to west with a lat-
eral spacing of 4.8m. Vertically, there are 4 temperature 
measuring points, with the topmost point being 0.5m 
from the grain surface, the bottommost point 0.2m from 
the warehouse floor, and a distance of 1.4m between 
each measuring point. The sensor network layout is 
shown in Fig. 4. Given that grain are poor conductors of 
heat, the transfer of heat in and out is relatively slow[8], 
leading to data collection once a week. The optimal 
sampling time is set at 10 a.m. daily, as measurements 
taken at this moment minimize deviations caused by 
environmental temperature fluctuations, especially 

Fig. 1.	 Granary location selection
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the following, each block of the proposed method is 
described in detail:

(1) Data collection block
 Through the grain information management system, 
we collected temperature readings from 112 sensors for 
135 representative days inside the granary. Moreover, 
we gathered other feature data that might infl uence the 
temperature: sensor bin temperature, bin temperature, 
external temperature, external humidity, and the whole 
bin average temperature. Due to issues like sensor 
damage and aging, as well as connection problems 
between sensors and receiving devices, there might be 
anomalies and zero values in the data, necessitating fur-
ther data cleaning. The nulls and outliers above 45˚C or 
below -20˚C will be replaced with the average tempera-
ture of the layer. After data cleaning, the original tem-
perature data and feature data were transformed from 
two-dimensional array data into tensor format, facilitat-
ing the subsequent use of automatic differentiation 
(Autograd) and optimizer (Optimizer) for model train-
ing and evaluation. The inputs for the model are x, y, z,
f1, f2, ... fn, where x, y, z are the coordinates of the tem-
perature sensor, and f1, f2, f3 ... fn are external features 
respectively. The naming convention for temperature 
measurement points is: (row index, column index, verti-
cal layer index). For instance, (2,4,3) indicates the 2nd 
row, 4th column, and the 3rd temperature measurement 
point from the bottom of the grain. The primary goal is 
to create a correlated mapping between the sensor loca-
tions, external characteristics, and sensor temperature 
readings, represented as T = f (x, y, z, f1, f2, ... fn).

(2) CNN block
 After preprocessing the collected data, it is input into 
the model. The input data matrix is X, 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

, 
where b, c and s respectively represent the number of 
data samples (batch size) captured in one training, the 
number of features (channels), and the length of sequence 
data (sequence length). The values of batch size and 
channels in this model will be discussed in detail in sub-
sequent chapters. As the data originates from various 
sensors at a singular point in time, the sequence length 

Fig. 3. The internal storage environment of the granary

Fig. 4. Sensor network layout in the granary

(b)  Two-dimensional view of sensors layout

(a)  Three-dimensional view of sensors layout

Proposed method
 This section delineates the architecture of the pro-
posed grain temperature interpolation method and its 
primary components. For improved feature extraction and 
prediction performance, we amalgamate Convolutional 
Neural Networks (CNN), Attention Mechanism, and 
multi-layer perceptron (MLP) into a unifi ed framework, 
introducing a novel hybrid grain temperature interpola-
tion method termed CAMNN. Figure 5 depicts the pro-
posed method comprising 4 basic blocks: Data collection 
Block, CNN Block, Attention Block and MLP Block. In 
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for each convolutional layer satisfi es the following 
relationship:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 where iMap represents the size of each input feature 
map; CWindow is the size of the convolutional kernel; 
CInterval indicates the stride of the convolutional kernel 
in the preceding layer, with a value of 1 in this model; 
oMap signifi es the count of output feature maps in each 
convolutional layer; iMap denotes the number of input 
feature maps, with 1 indicating the bias that’s shared 
within a single output map. Assume in the convolutional 
layer, the output value of the k-th neuron in output fea-
ture map n is 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

, and 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

represents the output value 
of the h-th neuron in the input feature map m, then the 
aforementioned meets the subsequent equation:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

is set to 1. Initially, the input data goes through the con-
volutional layer. This layer aims to execute convolution 
operations on every input channel, capturing the local 
dependencies among various features. By sliding the 
convolutional kernel across the input data, CNN can 
profi ciently recognize and capture local features from 
temperature information, which is especially important 
for spatial data like temperature fi elds, as local tempera-
ture distributions are often infl uenced by micro-envi-
ronmental factors inside the granary, such as airfl ow 
and humidity[9]. The mathematical representation of the 
convolution operation is:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 where Oconv denotes the output of the convolution; X
is the input matrix; i indicates the batch index; j denotes 
the position in the sequence; Wconv is the weight of the 
convolution layer; bconv is the bias of the convolution 
layer; KS indicates the number of Kernel Size. The size 
of each output feature map oMapN for each convolu-
tional layer and the number of trainable parameters 

Fig. 5. Illustrative architecture of CAMNN.
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+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 where 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 and 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 is a hyperpa-
rameter that represents the dimension of the attention 
weights. Next, the tanh function is used to add non-lin-
earity to Z, resulting in the final attention scores s(q,k). 
To amplify the differences between the weights and 
ensure that the sum of the weights is 1, the softmax 
function is applied to normalize the attention scores 
s(q,k):

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 Through calculating weights, the attention mecha-
nism identifies the input sections the model should “con-
centrate” on. By multiplying the normalized attention 
weights with the feature maps from the CNN output, a 
weighted feature representation is achieved:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 Where 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 represents the Hadamard product (element- 
wise multiplication). In order to mitigate the overfitting 
risk associated with a substantial increase in input 
dimensions, the post-weighted features were consoli-
dated into a comprehensive representation:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 where 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 denotes the weighted output for the i th 
feature. The calculated weights are applied to the corre-
sponding inputs, and through weighted summation, the 
model can focus more on those input parts with higher 
weights. In this block, attention scores are computed 
using a linear layer, bypassing the use of encoding and 
decoding structures. The structures of encoding and 
dec+oding primarily originate from the sequence-to-se-
quence (Seq2Seq) model, which typically performs 
better in tasks that require capturing long-distance 
dependencies, such as machine translation or text sum-
marization[10]. In this particular task, the emphasis lies 
on the data’s spatial configuration and neighboring 

	 where fcov denotes the activation function used in the 
convolution operation. 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 represents the weight 
associated with the h-th neuron on the input feature map 
m and the k-th neuron on the output feature n map . To 
facilitate further processing and computation, superflu-
ous dimensions are eliminated using the squeeze opera-
tion. The dimensionality of the data is changed from 
Batch Size × Channels × 1 to Batch Size × Channels:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 Only the first value from the third dimension is 
chosen. As the convolution yields an output of Batch 
Size × hidden_channels × 1, redundancy is observed in 
the third dimension. There might be non-linear relation-
ships in the sensor data. For instance, the response of 
certain sensors might depend on specific thresholds or 
ranges of other sensors. Owing to its non-linear charac-
teristics, ReLU can assist the CNN model in grasping 
and understanding these non-linear relations. As a 
result, the ReLU activation function was employed to 
capture intricate features and patterns.

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

(3)	 Attention block
	 The attention mechanism serves to pick out the most 
pertinent parts for interpolation from the various local 
features extracted by the CNN. This allows the model to 
dynamically shift its focus depending on the intricacy of 
the input, rather than giving equal importance to all fea-
tures. The primary objective of the attention module is 
to assign a weight to the data from each sensor, indicat-
ing its significance to the interpolation goal. Thus, we 
can weight the information of each sensor based on their 
importance, resulting in a comprehensive feature repre-
sentation. Initially, a parameterized linear function, f, is 
employed to transform Orelu, computing the raw atten-
tion scores for every input data. In this context, f rep-
resents a fully connected layer.
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using the attention mechanism, facilitating the judicious 
distribution of computational resources based on sensor 
readings, particularly when computational capabilities 
are constrained. This ensures heightened focus on sig-
nificant regions. The MLP integrates all information by 
capturing the more complex interdependencies between 
features. Additionally, based on limited sensor data, it 
can accurately interpolate the temperature at any posi-
tion inside the granary, enabling monitoring of the entire 
temperature field of the granary.

Experimental setup
	 To build the deep neural network models, all experi-
ments are conducted via Keras and Pytorch. The model 
training and fitting are conducted on a workstation with 
a configuration of NVIDIA GeForce RTX3080 and 
Intel(R) Xeon(R) Gold 6253CL CPU @ 3.10GHz. The 
Pycharm is used as the development tool. Python 3.5 is 
used as the program language. Pytorch is used as the 
neural network learning framework. In experiment, 
Adam serves as the optimizer to optimize the neural 
network parameters, with an initial learning rate set to 
0.1. Mean square error (MSE) is utilized as a loss func-
tion that can be back-propagated to update the weights 
and biases. The batch size is 20, and the number of train-
ing epochs is 500. In the experiments, packages such as 
Keras, numpy, pandas, matplotlib and so on will be 
used. This study employs ten-fold cross-validation for 
model training and validation. The dataset is divided 
into ten equal parts, with nine parts serving as the train-
ing set and one part as the validation set. The training 
set is utilized for model training, parameter fitting, and 
determining spatial neural network weight coefficients. 
The validation set does not participate in the training 
process and is used to evaluate the model’s generaliza-
tion capability. Through cross-validation, results from 
training on varied groupings are averaged, mitigating 
the sensitivity related to data segmentation.

Evaluation metrics
	 In this research, three evaluation metrics—root-
mean-square error (RMSE), mean absolute error 
(MAE), and R-squared (R2)—are utilized to assess the 

relations (considering granaries as suboptimal heat con-
ductors). The process of encoding and decoding could 
potentially add unwarranted intricacy. The linear layer 
we used can directly compute weights for input data, 
allowing the model to focus more directly on input parts 
related to interpolation. Moreover, with fewer parame-
ters, it’s less prone to overfitting.

(4)	 MLP block
	 The MLP serves as the model’s concluding module, 
tasked with amalgamating data from the preceding two 
layers to execute the ultimate spatial interpolation. It 
merges the local features filtered out by the attention 
mechanism into a global description, and then interpo-
lates the temperature field inside the granary[11]. In the 
input layer, the MLP receives weighted features from 
the attention layer. These features encompass tempera-
ture information from various sensor locations within 
the granary, as well as the significance highlighted by 
the attention mechanism.

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 Hidden layers can capture complex patterns and non-
linear relationships in the temperature field, aiding in 
more accurate interpolation of positions without sensor 
placement. Each neuron in the hidden layer calculates 
the sum of weighted inputs and implements a nonlinear 
transformation through an activation function. Denote L 
as the count of hidden layers. The description for the lth 
hidden layer is:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 where Imlpl is the input for the l th hidden layer. For the 
first layer, Imlp1 = Imlp, and for other layers, 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 
and 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 are the weight and bias of the l th hidden layer, 
respectively. σ is the ReLU activation function. Finally, 
the ultimate interpolation is executed through the output 
layer. Wo and bo represent the weight and bias of the 
output layer, respectively.

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 Initially, CNN is employed to extract local spatial 
features. Subsequently, these features are processed 
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substantial predictive potential than shallow machine 
learning-based methods. Broadly speaking, all the deep 
learning models outperform the traditional models, and 
the proposed method has the best performance. This 
fact is that the shallow machine learning methods struc-
ture is relatively simple. Conversely, When addressing 
the temperature interpolation challenge in grain storage, 
deep learning techniques possess the ability for auto-
matic feature learning, high-dimensional data process-
ing and a specific structural design. Therefore, deep 
learning-based approaches are more adaptable in 
modeling complicated and nonlinear temperature 
interpolation.
	 The SVM model has the worst prediction perfor-
mance in all regions, with the highest RMSE and MAE 
values. RF is relatively better than SVM, but the infor-
mation of surrounding points cannot be used in point 
temperature interpolation. That is why there is no daz-
zling performance on the SVM.
	 For the MLP, the multiple neurons can capture more 
linear combinations and the nonlinear transformation of 
ReLU makes the result better. However, In the face of 
intricate data distributions or pronounced non-lineari-
ties, a mere MLP might fall short in capturing the details 
and patterns. Additionally, being a feedforward neural 
network, MLP struggles to effectively discern feature 
interactions or handle spatial data. As can be seen from 
the figure, the results of MLP leave much to be desired.
	 An ablation study has been considered to evaluate 
the performance. By introducing the Attention 
Mechanism  and  CNN, the overall performance of the 
interpolation model is significantly improved. The 
CAMNN model has the lowest error values compared 
with simple hybrid models and MLP single because the 
proposed model addresses the corresponding problem 
by using the advantages of CNN and Attention mecha-
nism. This improvement is attributed to the effective-
ness of the proposed model combination utilizing the 
strengths of each model. The reasons for the differences 
in the performance of these models can be attributed to 
the following points: 1) In grain temperature field mod-
eling, three aspects are paramount: capturing spatial 
characteristics, emphasizing pivotal data, and 

performance of the proposed model and to equitably 
compare it with alternative approaches[12]. The formulas 
for RMSE, MAE, and R2 are presented below:

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

	 In the aforementioned formulas, n denotes the 
number of interpolation data points; the interpolated 
value is 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

; the actual value is ti, and 

+ +

+ +

= × + ×
+ × + ⋅⋅⋅+

 is the average of 
actual value. RMSE and MAE are prevalent evaluation 
metrics for regression problems in this research. Both 
RMSE and MAE serve as indicators of model perfor-
mance, with their values ranging from zero (indicative 
of optimal performance) to bigger.

Comparing between of different models
	 Comparison experiments were conducted to analyse 
the effects of various models including support vector 
machine (SVM), random forest (RF), multilayer percep-
tron (MLP), MANN (MLP-Attention) and CMAA 
(CNN-MLP) in the point temperature interpolation. 
Fig.6 illustrate the comparison of the proposed method 
and other models.

Fig. 6.	 Comparision of MSE and MAE of CAMNN with other 
models.

	 From the figure, it can be seen that deep learn-
ing-based methods have a lower average error and more 
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ones. This consideration was also taken into account 
when designing the sensor network, with smaller verti-
cal spacing than horizontal spacing. From the interpola-
tion plots generated by CAMNN, it is evident that the 
vertical trend is better represented. This is attributed to 
the attention mechanism capturing this crucial trend, 
resulting in interpolation outcomes that incorporate 
more information from points in the vertical direction. 
2) Inside the grain pile, the temperature fluctuation are 
quite stable and exhibit the characteristic of uniformity, 
meaning that in the absence of external disturbances, 
the temperature differences among internal nodes are 
not significant, and all models exhibit good perfor-
mance. 3) In the figure, the first row illustrates the fusion 
models, and the second row depicts the non-fusion 
models. Several interpolation methods yield satisfactory 
predictive accuracy, yet the fusion models are more pre-
cise in predicting the temperature at the surface of the 
heap and those close to the walls and floor. The pro-
posed method, in particular, reproduces values that are 
closer to the true values, notably at points susceptible to 
external disturbances, as shown by the arrow in part d. 
4) As shown in the black rectangular area in part b of the 
figure, CMAA outperforms MANN, which is due to the 
CNN architecture is inherently adept at handling data 
with spatial correlations. The temperature distribution 
on the surface displays spatial patterns similar to 
images, and CNN can effectively capture these local 
details. The black boxed dots in part c indicate that 
MANN is superior to CMNN. This superiority stems 
from the significant temperature changes at points near 
both the wall and the grain surface/ground. There are 
fewer such points in the training set that reflect this 
characteristic, and the Attention mechanism excels at 
emphasizing key features and efficiently selecting and 
concentrating information. 5) At the grain surface layer, 
as shown in the black rectangular area of part d, MLP, 
RF, and SVM all perform inadequately, with noticeably 
less accuracy than the fusion models. The reason for this 
is that fusion models, by integrating various network 
types, offer higher model complexity and flexibility, 
better adapting to the characteristics of the data. 6) In 
areas of extreme high and low temperatures, as well as 

discerning non-linear relationships. The proposed 
model adeptly manages all three, yielding the topmost 
accuracy. 2) The CMNN model, while proficient in 
identifying spatial characteristics and non-linear rela-
tionships, doesn’t give adequate attention to crucial 
data, leading to slightly reduced accuracy. 3) The 
MANN model, even with its ability for highlighting key 
data and understanding non-linear patterns, lacks in 
recognizing spatial characteristics. Given that grains 
remain relatively stable during storage and the tempera-
ture changes induced by their biochemical reactions are 
minimal compared to the impacts of surrounding points, 
models that don’t account for spatial features tend to 
have significantly lower accuracy.
	 Overall, the MAE and MSE of CAMNN are 0.5251 
and 1.0881 respectively, achieving reductions of 64.20% 
and 59.90% over SVM, 60.64% and 60.57% over RF, 
63.80% and 59.26% over MLP, 54.17% and 31.60% over 
MANN, 31.93% and 20.07% over CMNN, respectively.

Visualization Analysis
	 Furthermore, we present the three-dimensional spa-
tial distribution of interpolated results for each imple-
mented method to show the results more clearly and 
highlight our proposed method’s overall benefits over 
other methods. As shown in Figure 7 and Figure 8, at the 
surface of the grain pile and near the walls, the tempera-
ture of the grain is more dynamic due to their proximity 
to the external environment. Consequently, these loca-
tions exhibit larger temperature fluctuations. Conversely, 
the central region experiences minimal temperature 
variations, owing to the poor thermal conductivity of 
the grain. During the summer season, the temperature 
difference between the grain’s periphery and the central 
part of the pile gradually increases, accurately depicting 
the temperature distribution pattern of grain storage, 
commonly referred to as the “cold core and hot surface” 
phenomenon.
	 The performance of various methods exhibits some 
differences, as can be analyzed from the interpolation 
result plots: 1) The spatial distribution of grain tempera-
ture exhibits a clear stratification phenomenon, with 
vertical temperature gradients greater than horizontal 
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aids in the model focus on key temperature changes, 
enhancing its ability to recognize anomalies. The 
non-fusion models might lack sensitivity to abrupt 
changes, particularly in scenarios where there is an 
inadequate coverage of these extreme cases in the train-
ing data.

where there are large temperature fl uctuations, marked 
by the red and black arrows in part d, the non-fusion 
models are not suffi ciently effective. The reason for this 
underperformance is that the CNN is adept at capturing 
local spatial characteristics, a vital aspect for recogniz-
ing these points. Meanwhile, the Attention mechanism 

Fig. 8. Interpolation values of corresponding sensor nodes of the Hanzhong granary on August 25, 2022

Fig. 7. Measured values of the Hanzhong granary temperature sensor network on August 25, 2022



153

7th AFC Best Papers (2024)

validate the model. 2) Incorporate more features, such 
as the structure and materials of the granary, to further 
improve the accuracy of interpolation. 3) To better 
understand the decision-making process of the model, 
we consider introducing model interpretability tools, 
such as SHapley Additive exPlanations (SHAP) or Local 
Interpretable Model-agnostic Explanations (LIME). 4) 
Ultimately, develop a real-time monitoring and early 
warning system that automatically sends an alarm when 
the model interpolates that the grain temperature may 
reach a dangerous level.
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Conclusion
	 The process of grain storage encompasses various 
elements, including the internal airflow within the grain 
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culminate in a distinctive grain storage ecosystem. The 
temperature fluctuations inside the grain pile are intri-
cate, and it’s impractical to represent the entire tempera-
ture distribution solely with data from a limited number 
of sensors. China boasts a rich variety of grains and 
numerous types of granaries. It’s challenging to effec-
tively measure and calculate the internal parameters of 
the grain pile, making the temperature distribution and 
interpolation particularly difficult. At present, there’s a 
lack of comprehensive research on interpolation algo-
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have applied some simple models, such as the BP algo-
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meet practical engineering demands. We presented a 
hybrid neural network based on CNN and MLP with the 
attention mechanism in this study. Leveraging the local 
feature extraction of CNN, dynamic selection of 
Attention, and global information integration of MLP, 
we achieved precise spatial interpolation of the tempera-
ture distribution within the grain pile. Such a design 
ensures that the model has high accuracy and strong 
adaptability, allowing it to automatically learn and 
adjust weights to cater to the data distribution and char-
acteristics of various grain types in different regions 
and different size of granaries.
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