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Introduction
	 Eggplant (Solanum melongena) ranks third among 
the vegetables and rootcrops produced in the Philippines, 
thus, playing a big role in the country’s economy. 
According to the 2018 survey conducted by the Crops 
Production Survey (CrPS), covering all regions except 
the National Capital Region, eggplant production 
increased to 103,000 metric tons compared to the previ-
ous year at 99,490 metric tons, showing a growth of 
3.6% [1].
	 In the second quarter of 2020, the Philippines ranked 
10th in eggplant production globally, at 104,440 metric 
tons. Compared to other vegetables, eggplant can be 
planted year-round, and with proper cultural practices, 
it can potentially yield 18,000 kg/hectare giving the 

eggplant farmer about PHP 90,000 (~USD 1,850) net 
income per hectare [2].
	 However, eggplant production in the Philippines is 
not without its challenges. Aside from natural disasters 
such as typhoons, eggplant production is greatly affected 
by the two most damaging pests: the leafhopper 
(Amrasca biguttula) and the eggplant fruit and shoot 
borer (EFSB) (Leucinodes orbonalis Guenee). Infestations 
of these two pests have resulted in an average of 50%–
70% yield loss. Aside from yield loss, farmers often 
spend a big chunk of their money on pesticides that they 
would spray 60–80 times over a 4-month period to get 
rid of EFSB, according to local studies [3]. 
	 The Bt Eggplant Project, which ended in 2014, was 
designed to utilize agrobiotechnology approaches, such 
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leafhoppers [5]. 
	 One research showed that the feeding activity and 
the number of herbivores present on a leaf is inversely 
proportional to the trichome density of the leaf [6].
	 To quantify trichome density, researchers would take 
a leaf sample from an eggplant variety and place it under 
a microscope, where they would count the number of 
trichomes in the image to measure its density.
	 Fig. 1 shows a sample trichome image taken from a 
camera mounted on a stereo zoom trinocular microscope.

Fig. 1 	 A sample trichome image taken from a camera 
mounted on a microscope

	 After counting the trichomes in the image, research-
ers would then repeat the process for all the eggplant 
samples for every eggplant variety they would study, 
which would entail a lot of work and would be prone to 
human error in the long run.
	 Each leaf sample is then categorized based on the 
number of trichomes counted. There are three catego-
ries: few (less than or equal to 49), intermediate (between 
50 to 99), and many (greater than or equal to 100) [7]. 
There is a need to assist eggplant researchers by devel-
oping IT-based tools to speed up the counting and anal-
ysis of trichome densities in different eggplant varieties.
	 The feeding preference of pests is already known as 
a good indicator of host plant resistance. Using video 
data, insects are analyzed based on their feeding prefer-
ences given certain varieties of plants. It has been done 
on aphids [8] and thrips [9], both destructive pests. 
	 But to do this, access to custom computer hardware 

as genetic modification, in making eggplant resistant to 
EFSB larvae. The eggplant was modified using a gene 
from a common soil bacterium (Bacillus thuringiensis), 
which would prove fatal to EFSB larvae but harmless to 
humans. It was successful during field trials [3] but 
encountered opposition in the approval of Bt eggplant’s 
use in the Philippines because of the lobbies against genet-
ically modified crops. The ruling was later reversed [4].
	 Eggplant researchers at the Institute of Plant 
Breeding in UP Los Banos started to look for a different 
approach to enhancing eggplant’s host resistance based 
on the lessons learned from the Bt eggplant. Under the 
leadership of Dr. Desiree Hautea, a multidisciplinary 
project was approved by the Department of Science and 
Technology’s Philippine Council for Agriculture, 
Aquatic and Natural Resources Research and 
Development (DOST-PCAARRD). The project aims to 
develop new eggplant varieties with new plant defense 
genes that have multiple insect resistance using innova-
tive technologies that do not require the introduction of 
genes from other organisms. One of these innovative 
technologies is to utilize computer vision, machine 
learning, and other information technology-based tools 
in assisting researchers in identifying host plant resis-
tance of eggplants based on certain physical character-
istics and then identifying the genes responsible for 
those characteristics. 

Cost-Effective IT-Based Phenotyping 
Tools
	 Host plant resistance is one of the insect pest man-
agement strategies that are sustainable, environ-
ment-friendly, and compatible with other control 
methods. However, it is tedious and time-consuming as 
researchers would have to conduct phenotyping of vari-
eties of eggplants, such as trichome density counting 
and observing the feeding preference of the pests.
	 Trichomes are hair-like epidermal structures that can 
be found on the aerial parts of the plant. Trichomes can 
vary in size and have different characteristics that are 
species-specific. Therefore, it is used as a diagnostic 
characteristic to identify plant species. The high density 
of trichomes makes the plant resistant to pests, such as 
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program that will be able to batch process a set of egg-
plant trichome images and classify them according to 
their trichome density categories. The computer pro-
gram was designed to be modular and uses open-source 
programming libraries for the image analysis and classi-
fi cation components. The use of image processing and 
analysis on agriculture-based images is already well 
established. 
 Image segmentation techniques such as image fea-
ture points and corner detection were used to automati-
cally count rice and wheat grains using an Android 
mobile device [11]. Another study also used image seg-
mentation techniques to count the leaves of medicinal 
plants even from uneven and complex backgrounds [12].

Trichome Counting
 The trichome counting problem can be reduced to an 
image segmentation problem where the components in 
the image you want to segment are the trichomes only, 
allowing automated counting. Based on the quality and 
image capture approach provided for this study, the 
image segmentation approach followed the following 
process:
1. Image enhancement — The images used in this 

study employed image sharpening to enhance the 
edge pixels of the trichomes. Contrast limited adap-
tive histogram equalization (CLAHE) further 
enhanced the lighter trichome pixels against the 
darker green background. CLAHE is already estab-
lished as a good algorithm to enhance contrast and 
remove noise pixels in the image [13]. Fig. 3 shows 
the original image and the sharpened CLAHE image. 
After this operation, the trichomes would look like 
circular disks with faded hair-like projections. When 
counting manually, the researcher looks at the cen-
tral circular part of a trichome.

and software is needed, such as the ones provided by 
Noldus [10]. Fig. 2 shows Noldus EntoVision’s hardware 
and software components. These products, however, are 
not available in the local market. The cost of purchasing 
such custom technologies can go up to USD 70,000 
(~PHP 3.5 million), including shipping and personnel 
training. 

Fig. 2  Noldus EntoVision lab setup

 Thus, there is a lot of room for research when it 
comes to developing low-cost technologies yet still 
capable of generating high throughput eggplant pheno-
type data that will be used for genotype analysis. 

Objectives
 This paper presents the development of cost-effective 
IT-based phenotyping tools that can allow an eggplant 
researcher to:
1.  Analyze trichome images and automatically provide 

the trichome densities of different eggplant 
varieties.

2.  Set up an EFSB feeding preference experiment using 
off-the-shelf commodity equipment and gather feed-
ing preferences data of eggplant varieties via larvae 
trajectory analysis.

Materials and Methods
 Based on the objectives, two types of IT-based phe-
notyping tools were created. The fi rst one is a computer 
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Fig. 5  Trichome images with the detected trichomes 
labeled

Tracking EFSB Feeding Preference
 The second IT-based phenotyping tool for tracking 
EFSB feeding preference employs a computer program 
and an experimental setup that uses an ordinary USB-
based web camera, a cardboard box covered in white 
paper, and a laptop. Fig. 6a shows the design of the 
experimental setup.

Fig. 6a EFSB feeding preference experiment setup using 
the USB-based webcam

 Alternatively, you can also utilize your mobile device 
in place of a USB-based camera connected to your 
laptop. This can be easily set up using a free Android 

Fig. 3  Original trichome image (left) and the image after 
CLAHE was done (right)

2. Image morphology operations — After image 
enhancement, morphological transformation, specif-
ically, opening, was performed. By using an ellipti-
cal kernel, the centers were able to maintain their 
circular shape, whereas the branches lost their linear 
structure and merged with their surroundings. This 
also resulted in the image being composed of circu-
lar segments. Thresholding was performed to deter-
mine the potential central discs representing 
trichomes among the circular segments. Fig. 4 shows 
the remaining circles that passed the threshold. 

Fig. 4 Original trichome image (left) and image after 
morphology operations and thresholding were done 
(right)

3. Trichome segmentation — Using the circle Hough 
transform algorithm to detect shapes, the central 
discs were detected and highlighted in the original 
image. Fig. 5 shows the result of trichome detection 
based on the thresholded morphological image.
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Fig. 7 	 Sample video frame showing slices of different 
eggplant varieties and EFSB larvae

	 Because of the nature of video and its near real-time 
operation, the main computer vision algorithm for track-
ing the position of the EFSB larvae is the YOLOv4 
framework. The original YOLO framework uses a con-
volutional neural network (CNN) to detect objects near 
real-time with good performance in object detection 
accuracy and fast video frame rate [16]. YOLOv4 is the 
fourth iteration of the original YOLO framework and 
has faster video frame processing speed and higher 
object detection accuracy [17].
	 To use the YOLOv4 framework as the EFSB larvae 
tracker, sample videos were collected, and the EFSB 
larvae in each video frame were labeled. Then an artifi-
cial intelligence (AI) model using the YOLOv4 frame-
work was trained from the labeled video frames 
containing EFSB larvae. Fig. 8 shows the initial training 
results of the YOLOv4 framework AI; EFSB larvae 
were automatically detected and marked using colored 
bounding boxes.

application called the IP Webcam [14], which turns your 
Android phone into a network camera, as shown in Fig. 
6b.
	 The setup is simple; the camera is positioned above 
the box containing eggplant fruit slices and EFSB larvae 
at a top view angle while connected to the laptop. The 
camera sends video frames to the laptop while the com-
puter program analyzes the video frames and tracks the 
movement of the larvae, and detects which eggplant 
variety it prefers over a specified length of time, usually 
from 30 minutes to up to 2 hours. The computer pro-
gram also saves the data generated in a simple table 
format that shows the larvae’s position at different time 
intervals. This would allow eggplant researchers to 
identify the eggplant varieties that the EFSB larvae 
would prefer at a given time frame. This approach would 
allow the researchers to save time as they wouldn’t have 
to manually observe the movements of the EFSB larvae 
all the time. This is very similar to the studies done 
using the more expensive automated setups like the 
Noldus EntoVision [15].

Fig. 6b 	EFSB feeding preference experiment setup using 
the camera of the mobile device

	 Fig. 7 shows the sample video frame, which contains 
the experimental setup containing eggplant slices from 
different varieties and EFSB larvae roaming around.
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Table 2. Software libraries specifications used in the 
study

Library Specifi cation 
Computer Vision OpenCV 4.5.1 
 Programming Environment Python 3.8 with Tkinter 

 for GUI
AI Framework YOLOv4 Framework

Results and Discussions
Automated Trichome Counting
 The trichome image dataset provided was pre-classi-
fi ed into its categories: few, intermediate, and many. 
There were a total of 62 trichome images: 5 images in 
the ‘few’ category, 43 in the ‘intermediate’ category, 
and 14 in the ‘many’ category. The limited data avail-
able for each category was because of the availability of 
the eggplant varieties that were planted when the image 
data were gathered. The computer program for trichome 
counting was created using the Python programming 
language and the Tkinter graphical user interface (GUI). 
The user would only have to load the folder containing 
the trichome images, and the program would automati-
cally count the number of trichomes in every image and 
classify each image in its respective categories. Fig. 9a 
shows the screenshot of the program when loading a 
folder, and Fig. 9b shows the result of one of the images 
processed.

Fig. 9a  Program screenshot: loading a folder containing 
trichome images

Fig. 8  EFSB larvae tracking using YOLOv4 initial results

 Once the AI was done training, the YOLOv4 AI 
model would then be loaded into the computer program 
so that it will be able to detect and track EFSB larvae as 
well as the location of the eggplant slices.

Software Specifi cations
 The two IT-based phenotyping tools developed for 
this study used readily available computer hardware and 
peripherals and open-source software libraries.
 Table 1 shows the hardware specifi cations used to 
create the IT-based phenotyping tools for the automated 
trichome counting program and the EFSB feeding pref-
erence setup.

Table 1. Computer hardware specifications used in the 
study

Hardware Specifi cation 
Laptop Core i5 8 GB RAM

Desktop PC for AI Training Core i7 16GB RAM with 
 NVIDIA GTX 1070

Mobile phone or webcam 720p, 23 fps

 Table 2 shows the software specifi cations used to 
create the IT-based phenotyping tools for the automated 
trichome counting program and the EFSB feeding pref-
erence setup.
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program that was developed was designed to be modu-
lar, so it was just a simple task to experiment with other 
techniques such as incorporating a trained CNN AI 
model to handle the diffi cult cases. Modifying the com-
puter program to use the trained AI yielded the follow-
ing results, as shown in Fig. 11. There is a vast 
improvement in the accuracy of detecting trichomes and 
classifying them in the right category. It was still able to 
detect “few” trichomes at 100% accuracy, but it improved 
detection accuracy for “intermediate” and “many” at 
79% and 82%, respectively. Fig. 12 shows how the 
improved approach even captures the diffi cult cases. 

Fig. 10 Examples of difficult images that gave poor results

Fig. 11 Using the CNN AI model to detect trichomes

Fig. 9b Program screenshot: viewing one of the processed 
images and its respective category

 The program’s overall performance was assessed by 
comparing the computer program’s assessment of each 
trichome image’s category and the assessment by an 
expert. Table 3 shows the result of the computer vs. the 
expert’s assessment. 

Table 3. Trichome category classification accuracy after 
expert validation 

Category Accuracy (%)
Few 100 %
Intermediate 65.1 %
Many 35.7 %

 Based on the results, two factors played a big role in 
the performance of the program: image quality and 
image scale. The existing image capture hardware only 
had a 2-megapixel resolution, and the scale at which the 
images were taken made some of the trichomes less vis-
ible than others. The presence of trichome clusters also 
made accurate counting diffi cult, leading to false posi-
tives and false negatives. Some trichomes were detected 
where there shouldn’t be one, and trichomes were not 
detected even if there should be one. Analyzing tri-
chome images with few trichomes was simpler as the 
trichomes were often separate and distinct. Fig. 10 
shows the image samples with the diffi cult cases pres-
ent. It seems like pure image processing techniques 
alone proved insuffi cient for the task, but the computer 
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Fig. 13a  Screenshot of the EFSB Feeding Preference 
computer program running 

Fig. 13b  Processed video frame showing the locations of 
EFSB larvae and the eggplant slices 

 The video frame was divided into nine equal regions 
to add more information regarding larvae behavior, such 
as to determine whether it is important to know whether 
there is a reason why certain larvae linger in a particular 
region between two eggplant slices of certain varieties. 
As the video frames are processed, the locations of 
larvae and the region they are in are recorded into a text 
fi le. Fig. 14a shows a portion of the text fi le generated 
which shows that at the 24-second mark, larvae were 
seen lurking in regions 4 and 7 in the video frame.
 An image containing the trajectories of the EFSB 
larvae can also be generated once the experiment is 
over, as seen in Fig. 14b.

Fig. 12 Detecting trichomes in difficult images using 
improved approaches

Tracking EFSB Feeding Preference
 For the EFSB feeding preference tool, the computer 
program was created using Python and incorporated a 
trained YOLOv4 model to track EFSB larvae trajecto-
ries and then save the report in a text fi le. The program 
successfully generated feeding preference data that will 
be used for later analyses. Training the YOLOv4 AI 
model used only one sample video with 1,000 frames. 
The frames were annotated with the locations of the 
EFSB larvae and eggplant slices marked. Once the 
training was done, the AI model was plugged into the 
computer program for the EFSB feeding preference test 
to begin.
 Fig. 13a shows the screenshot of the EFSB feeding 
preference program running. The decision to make it a 
command-line program was to ensure that performance 
and accuracy in the processing of video frames do not 
slow down the program since video frame processing 
takes up a lot of computing resources and memory. Fig. 
13b shows the results of the processed video frame.

Val Randolf M. Madrid, et al.
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 This paper is a result of designing and pilot testing 
cost-effective IT-based phenotyping tools that will be 
able to generate similar data. Although it was able to 
perform as intended, it still leaves much to be desired.
 There is a need to update the image capture setup for 
the trichome counting program to produce better results. 
Based on lessons learned from these studies, there have 
already been preliminary results in the improved tri-
chome images and the initial AI model that analyzes 
them. Fig. 15 shows the screenshot of the updated com-
puter program using improved images. The images have 
a higher image resolution at 5 megapixels and a more 
close-up shot to address the issues found in this study.
 For the EFSB feeding preference program, the chal-
lenge is to streamline and integrate the data generated 
into different data mining techniques and make the 
computer program easier to use. Preliminary designs 
have already been started to make the system into a full-
stack web application to implement data mining tech-
niques since the generated data will be stored in a 
database while making it easier to use via a GUI in the 
web browser. Fig. 16 shows the proposed wireframes 
planned to achieve this in future improvements.

Fig. 15 Updated trichome counting program using the new 
and improved images, detected trichomes are 
marked purple

Fig. 14a  Text file data containing info on detected EFSB 
larvae lurking in regions 4 and 7 at the 24-second 
mark

Fig. 14b  Trajectories of the EFSB larvae (green dots) 
relative to the location of eggplant varieties 

 The EFSB feeding preferences program successfully 
generated feeding preference data given a time frame. 
 Most of the cost of developing the two IT-based phe-
notyping tools centered around the computer hardware 
and peripherals, which amounted to about PHP 250,000 
(~ USD 4,900), a cost that may be more affordable to 
smaller labs and research projects. 

Conclusion
 There is an urgent need to develop tools that will 
assist eggplant researchers in doing high throughput 
phenotyping to determine host plant resistance. There 
are existing tools already that allow them to do this, but 
the availability and cost might be a bit steep for smaller 
research labs.
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